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FOREWORD 

This report is the result of studies funded as part of the National Acid Deposition 
Assessment Program (NAPAP) by the U.S. Department of Energy and, in earlier stages, 
also by the U.S. Environmental Protection Agency. The work originated as part of the 
studies that were managed by Task Group I, Assessments, and were aimed »* f"PPO;'t'"g 
studies of the atmospheric sciences and source/receptor relationships, part of NAPAP s 
1985 Assessment. A principal objective of those studies was to understand the 
performance characteristics of available atmospheric transport and deposition models for 
use in predicting the environmental impacts of sulfur emissions and in the possible 
development of optimal emission-control strategies. In particular, quantitative 
estimates of the uncertainty associated with certain aspects of model predictions aje 
important to estimate the uncertainties in impact analyses and to determine the 
confidence that one should place in proposed policies and emission-control strategies. 
Model evaluation studies have often provided only limited insight into the iiature of 
performance errors. Furthermore, the results sometimes do not address the performance 
factors of most importance to those using models for policy and assessment 
applications. In practical applications, the principal question is not why a model misses 
the mark, but by how much and in what manner it tends to miss. However, the apparent 
error between model predictions and observed values may also result in part from 
limitations in the observations, which needs to be taken into account in assessing the 
model's true performance. 

The present study was intended to evaluate a range of statistical performance 
measures and to develop and test several new methods applied intensively to one model; 
however, the objectives and scope were still limited. Determination of the uncertainty 
in model-derived source/receptor relationships did not appear to be feasible from a 
comparison of the model predictions with the limited number of observations of 
deposition currently available. At best, it may be possible to estimate or place bounds on 
the uncertainty in predictions of deposition and to understand the character of those 
uncertainties. The performance of a model in predicting deposition and air-quality 
changes in response to large emission changes, outside the bounds of experience with 
historical evaluated data, cannot be confidently determined by the present methods. 
New approaches appear to be needed to provide a better understanding of the character 
of model errors and to estimate the uncertainties in future predictions within a limited 
domain, based on a comparison of predictions with historical observations. We hope that 
the results reported on here will be useful and can be applied to other models, as weU as 
refined by further application with more extensive data. 

Richard H. Ball 
Office of Environmental Analysis 
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ERROR PATTERN EVALUATION AND UNCERTAINTY 
QUANTIFICATION FOR A REGIONAL-SCALE 
(LAGRANGIAN STATISTICAL TRAJECTORY) 

ATMOSPHERIC TRANSPORT AND 
ACID-DEPOSITION MODEL 

by 

Michael A. Lazaro and Jack D. Shannon 

SUMMARY 

Knowledge of the relationship between causes and effects plays a key role when 
decisions involving scientific understanding and public policy formulation (science-policy 
decisions) are made. For instance, to achieve a particular improvement in environmental 
quality, policymakers need to know what causes the problems in order to decide what 
actions to take. Unfortunately, uncertainty is inherent in any decision-making process 
involving environmental issues. It is inherent in estimates of the types, probability, and 
magnitude of these adverse effects themselves. It is also inherent in estimates of the 
effects of the policy proposed to solve these problems — both the economic effects and 
the existing and future environmental effects (on ecosystems and humans). The 
uncertainty in a proposed plan of action results from unpredictability caused by the 
policymaker's lack of knowledge or information and the incompleteness or unreliability of 
the information itself. This uncertainty can never be eliminated in science-policy 
decisions. In certain circumstances, however, it can be reduced, and it can be 
systematically analyzed and quantified so that the policy makers will be informed when 
deciding which options to consider and act upon. Deciding when an action can be taken is 
an issue based more on socioeconomics and political readiness than on the degree of 
scientific certainty. « 

This general understanding of the relationships among causes, effects, and 
science-policy decisions is relevant to determination of future policies on acid 
deposition. Knowledge, understanding, and ability in five important areas are 
prerequisites for developing, evaluating, and selecting the most cost-effective acid-
deposition control and mitigation options. The areas are (1) an understanding of the 
causes of acid deposition from pollutant source-atmospheric interactions (source-term), 
(2) an understanding of the processes involved in the transfer of pollutants in source-
receptor interactions (atmospheric term), (3) a knowledge of the impacts of deposition 
from atmosphere-receptor interactions (receptor term), (4) the ability to assess risks and 
perform a cost-benefit analysis (decision analysis term), and (5) the ability to estimate 
error and uncertainty (uncertainty analysis term) in the model estimates of sources of 
pollutant releases (causes), pollutant transmission and deposition, ecosystem damages and 
human health impacts (effects), and costs of deposition damages and pollutant controls. 
This study addresses limited aspects of the second and fifth areas (atmospheric term and 
uncertainty analysis term) by developing an analytical framework to describe and 
quantify error and uncertainty in long-range transport model predictions. The framework 
is composed of two components, a methodology for empirical Bayesian uncertainty 



analysis and a methodology for parametric statistical error pattern analysis. The details 
and results of the latter component are given here, and the types and patterns of error 
are described and quantified. 

One of the major goals of the National Acid Precipitation Assessment Program 
(NAPAP) is to provide objective and accurate estimates of the current contributions of 
anthropogenic and natural sources of acidic deposition, and estimates of the expected 
changes to these contributions from modifications in emission source strengths (NAPAP 
1987a). This goal requires two types of "source-receptor relationships" (SRRs) to be 
developed: (1) SRRs that apportion the contribution from source areas (i.e., industrial 
centers, geopolitical regions) to receptor areas of acidic deposition (i.e., sensitive 
watershed, geopolitical regions) and (2) SRRs that forecast response in acidic deposition 
to receptor areas as a result of modifications to the emissions. The goal of this study is 
not to provide apportionment or forecast response SRRs but to provide a framework for 
quantifying the error and uncertainty in model predictions that may be used in providing 
SRRs for policy-decision analysis. The framework is composed of two components. The 
primary component uses an empirical Bayesian approach to quantify uncertainty in SRRs 
in probabilistic terms. This approach provides a means to compute the probability of the 
outcome (success or failure) of a set of proposed actions (i.e., policy options for control 
or mitigation of acid deposition) based upon the computed uncertainty in predicted 
variables pertinent to judging the success or failure of technologically and economically 
viable policy options. The ability to quantify the uncertainty in both the apportionment 
and forecast response SRR is of key importance to informed decision making. The 
second component of the framework uses some newly developed approaches to error 
pattern and error decomposition analysis along with some more traditional approaches to 
elicit patterns of the apparent error in model predictions. These approaches are not only 
important in expressing how weU a model is performing but can also help provide, with 
accompanying model evaluation data-base and methodology enhancements, a better 
understanding of why a model performs the way it does. This understanding is critical to 
identifying and correcting the weak links in the modeling process. Because the empirical 
Bayesian approach has not been fully developed and tested, only the results from the 
second component of the framework for quantifying error and uncertainty in model 
prediction are reported at this time. 

The principal objective of this study is to develop a flexible methodology to 
evaluate model performance that would help in the understanding of the characteristics 
and magnitude of the apparent error in model predictions. Because the characteristics of 
apparent model error can be highly complex, with multiple and interdependent causes we 
adopted an approach that encompasses a combination of several new and existing 
statistical performance measures. This approach recognizes that no single or narrow 
group of performance measures (e.g., traditional distributional statistics designed to 
measure bias, correlation, and variance) can be used exclusively to uncover all the 
important characteristics of model performance. Our intention is not necessarily to 
determine why, in a diagnostic sense, a model performs well or poorly, although if causes 
of poor model performance can be identified and confirmed, we hope to be able to 
communicate this information to model developers so that model components and data
base elements can be improved. Rather, our task is simply to provide informal ve 
measures of how well or poorly, in an operational sense, a model performs under 



different observable conditions and constraints. Results from model applications can 
then be quantified in terms of expected level of error. This study should, therefore, be 
viewed mainly from an application or operational perspective on evaluating and 
comparing models and model sensitivity rather than from a diagnostic or research-
oriented perspective on improving model performance. Such information, if presented in 
a form that decision makers can understand and use, can have important implications for 
policy formulation and decision making. 

Our specific goal is to develop a better understanding of the performance 
characteristics and apparent error of a long-term regional transport and deposition 
model. We intend to determine how weU the predictions of the Advanced Statistical 
Trajectory Regional Air PoUution (ASTRAP) model compare with corresponding 
observations. Another goal is to discern and quantify differences in spatial and temporal 
patterns in seasonal and monthly mean observations and predictions and to determine the 
bias and scatter in model predictions. With respect to temporal patterns, we are 
interested in (1) how well the relative magnitudes of the peak seasonal wet sulfate (SOp 
deposition and the peak monthly mean SO| and sulfur dioxide (SOj) air concentrations 
(DAC) are reproduced in time, (2) how performance differs in seasons of the same year 
(interseasonal performance), and (3) how performance differs in seasons of separate years 
(interannual performance). With respect to spatial patterns, we are interested in (1) the 
location and magnitude of maxima, and (2) the location, orientation, shape, and gradient 
in the DAC contours. 

The ASTRAP model evaluation data base used in this study consisted of monthly 
average SOI and SO, air concentrations for four months in 1978, and seasonal wet SO4 
deposition over a two-year period beginning in December 1979 and ending in November 
1981. Greater physical understanding of model performance could be gained if 
predictions of wet deposition and air concentrations were evaluated for the same 
periods. For example, simulated atmospheric concentrations might be too low because 
parameterized wet removal is too high, but if simulated wet deposition for the same 
period is also too low, then some other feature mflst be involved. Similar deductive 
reasoning is possible if dry-deposition observations are also available for the same 
period. Unfortunately, suitable observation data sets for wet deposition, regional air 
quality, and/or dry deposition did not coincide. Nevertheless, the model evaluation 
methodology employed, along with model evaluation data base, did provide some useful 
and pertinent findings about the performance of the ASTRAP model. 

Table S.l summarizes the level of ASTRAP's performance^when simulating 
monthly average SOT and SO, air concentrations and seasonal wet SO4 deposition. The 
scatter error and bias error in model predictions are indicated by five nondimensional 
performance measures. The rank score error (RSI) is a performance measure designed to 
combine and balance the bias- and scatter-measuring attributes of the other four 
measures. The mean log error shows a strong tendency toward model overprediction of 
mean monthly SO| concentrations in October and a lesser degree of model 
underprediction of mean monthly SOj concentrations in January and April. The bias 
error is relatively small for the remaining monthly simulations. The same measures 
indicate a relatively large model overprediction of 1930 autumn and spring wet SO4 
deposition and a lesser degree of model overprediction in the winter. The bias error is 
relatively small in the 1981 summer and spring. Overall the model performs best, as 



TABLE S.1 Summary of Nondimensional Indices of 

ASTRAP Performance for Predictions of Monthly 

Average Sulfate and Sulfur Dioxide Air Concen

trations and for Seasonal Wet Sulfate Deposition 

Performance Index^ 

Air Concentrations 

Predicted Variable IDA VLE DMSE ,«LE RSI 

January 1978 

SOj 

April 1978 

SO4 

SO., 

July 1978 

SO4 

SOj 

October 1978 

SO4 

SO, 

0.60 
0.62 

0.56 

0.61 

0.83 

0.75 

0.45 

0.72 

0.229 
0.232 

0.058 
0.163 

0.056 

0.198 

0.076 
0.138 

0.132 

0.309 

0.690 
0.294 

0.044 

0.254 

0.251 
0.225 

0.105 
0.254 

-0.118 
0.240 

0.059 

0.109 

-0.429 

0.019 

2.13 
2.41 

2.65 

2.35 

1.36 

1.90 

2.97 

1.80 

Wet SO^ Deposition 

Winter 

1980 

1981 

Spring 

1980 

1981 

Sumner 

1980 

1981 

Autumn 

1980 

1981 

0.49 

0.67 

0.63 

0.82 

0.85 

0.85 

0.57 

0.70 

0.262 

0.242 

0.121 

0.116 

0.138 

0.100 

0.215 

0.135 

0.274 

0.272 

0.242 
0.114 

0.161 

O.UO 

0.398 

0.230 

-0.246 
-0.197 

-0.351 
0.015 

-0.055 
0.054 

-0.405 

-0.315 

2.82 
2.20 

2.30 

1.47 

1.53 
1.44 

2.79 
2 . U 

lOA = index of agreement (range 0.0. to 1.0; 1.0 = perfect 

model; 0.65 to 0.75 = average performance) 

VLE = variance logarithmic error (performance improves as 
it approaches zero) 

DMSE = dimensionless mean square error (range 0.0 to -5.0; 

0.0 = perfect model) 

MLE = mean logarithmic error (performance improves as it 

approaches zero) 

RSI = rank score index (range 1.0 to -10.0; 1.0 = perfect 

model; 1.7 to 2.0 = average performance) 



measured by RSI, in simulating July SO4 air concentrations. Performance on a 
comparatively high level is also exhibited for simulation of wet SO4 deposition for the 
summer and spring of 1981. Relatively poor performance is shown for October SO4 and 
January SO2 air concentrations and winter and autumn 1930 wet SOJ deposition. 

The magnitude of maximum seasonal wet SOJ deposition and montlily mean air 
concentrations can be reproduced reasonably well. Without additional years of model 
evaluation data, however, it is not possible to determine whether temporal patterns in 
observed wet SOi deposition are also reasonably reproduced by the model. The limited 
data analyses show significant interseasonal and interannual (between winters, springs, 
and autumns) differences in model performance. More data are needed to confirm this. 

Perturbations of four model parameters within the estimated range of 
uncertainty of these parameters revealed that simulations of SO^ air concentrations are 
most sensitive to variations in transformation rate (T .̂), while S02_concentrations are 
most sensitive to variations in dry-deposition velocity (V ĵ). Wet SO^ deposition is most 
sensitive to variations in the wet-removal coefficient (WC). The systematic error 
reduction potential (SERP), through adjustments in these parameters, is most significant 
for simulations of October and January SO4 (SERP = 59% and 23%) and April SO2 (SERP 
= 23%) air concentrations and for simulations of autumn (41% in 1931) and spring (22% in 
1980) wet SO4 deposition. This suggests that a significant fraction of the systematic 
error in model predictions for these monthly and seasonal periods, most notably October 
1973 and autumn 1981, can be reduced through adjustments in model parameterization. 
Systematic error in model predictions may be associated not only with model 
parameterizations but also with the estimation of source emissions and the analysis of 
wind and precipitation fields. Errors or unrepresentativeness in verification data can 
lead to an apparent systematic error in model predictions. Without a means to segregate 
the sources of systematic error in model predictions, any revisions to model 
parameterization should be made cautiously and should be based upon relevant field 
measurement, of key processes. In Sec. 6.2, discussions stress the importance of 
quantifying model input and model evaluation data (field measurements of DAC) error, 
and recommendations are given for the statistical treatment of this error to more readily 
identify its sources (i.e., model parameterization, field measurement). 

Error patterns are examined by decomposition of mean square error (MSE) into 
its spatial, temporal, and bias components and by decomposition of variance into spatial 
and temporal components. Kriging is then used to further examine ASTRAP's ability to 
reproduce spatial patterns in the observational fields (such as the position, shape, 
orientation, and magnitude of the gradient in the isolines). The spatial error in ASTRAP 
predictions of wet SO< deposition dominates, accounting for over 70% of the total error 
in the winter, spring, and summer. The predicted wet SO^ deposition in the autumn 
shows comparative levels of spatial and bias error, with a relatively small contribution of 
temporal error to the total error. The temporal error across seasons is smaller than the 
other two error components, particularly for winter and autumn. These results are 
probably caused by the statistically small number of data points (two seasons) considered 
in our analysis. Although only 50% of the error in the autumn predictions is spatial in 
origin, the relative larger overall error in autumn (73% to 122% greater than in spring 
and summer) makes the spatial error in autumn slightly larger than that in spring and 



summer. The computed bias-corrected variances (EBCVs) show that the model's ability 
to explain variance in summer simulations (over 40%) is substantially better than its 
ability to explain variance in other seasons. In fact, the negative EBCVs computed for 
the winter, spring, and autumn simulations show the model does not do well in explaining 
observed interannual variance for these seasons. This fact seems to indicate that the 
interannual correspondence between predictions and observations for nonsummer 
simulations are nearly random. These results should be viewed with caution because of 
the limited data available at the start of the study. 

Results from the kriging analysis provided additional indications of ASTRAP's 
limitations in reproducing monthly and seasonal patterns in DAC, although the extent to 
which the various monitoring sites captured the regional patterns remains a contentious 
matter. This analysis showed that although the magnitudes of the observed maxima in 
SO4 air concentrations and wet SO^ deposition are reasonably reproduced, the locations 
of these maxima are not. The model had difficulty in reproducing the position, shape, 
and magnitude of the gradient in the observed spatial patterns. Although there are no 
significant variations in the magnitudes of the predicted and observed interannual 
maximum wet depositions, there are significant variations in the locations of the 
observed maxima. Since variability in meteorology plays an important role in influencing 
locations where observed maxima occur, the difficulty that ASTRAP and, indeed, all 
regional transport models have in properly characterizing local or subgrid variations in 
wind and precipitation fields may be an important contributing factor in the model's 
inability to accurately locate the maximum deposition areas. This difficulty in 
characterizing the stochastic nature of winds and precipitation may also play an 
important role in the poor reproduction of other spatial features in the observed data, 
such as the shape, orientation, and magnitude of the deposition gradient, although 
simplifications in parameterizations of chemical or removal processes may also 
contribute. This hypothesis needs to be investigated through an analysis of alternatives, 
such as numerical weather prediction models for generating mass-consistent and 
dynamically correct winds. Through use of a more complete and longer (through 1986) 
precipitation chemistry data base, many of these issues could be more readily addressed. 

Our analysis of factors that may influence model performance indicates that 
sampling protocol can be a major contributor to the observed apparent model 
performance. Significant ASTRAP overpredictions (prediction-observation ratios greater 
than two) are more frequent for event or daily collectors than for weekly or monthly 
coUectors, particularly during the colder seasons. This may be due, in part to the more 
complete oxidation of S(IV) to S(VI) for collectors on longer sampling protocols The cold 
temperatures and limited availability of oxidants in winter, with a resulting observed 
S(IV) maximum observed during this season (Dana 1980), would seem to explain the lower 
SO4 concentrations in samples that are preserved. The S(IV) would gradually be 
converted to S(VI) in samples that are not preserved. The wet-removal parameterization 
in ASTRAP is for bulk sulfur; i.e., removal rates for SO2 and SOT are identical The 
rationale for this is that while initial_wet removal of S0= in the atmosphere is" more 
efficient than removal of SOj (the SO4 aerosol serve as cloud condensation nuclei) in-
cloud oxidation of SOj can be rapid, especially in the summer when oxidants are 
plentiful. The wet sulfur deposition predicted by ASTRAP corresponds to the bulk sulfur 
equivalent of combined S(IV) and S(VI) and should, if S(IV) is not measured, more closelj 



correspond to observations in which sample preservation of S(IV) is not ensured (NADP, 
APIOS-C, CANSAP, etc., sampling networks). 

When viewed from the perspective of providing apportionment and forecast 
response SRRs, the analysis, provided with the two years of data examined in this study, 
seems to indicate that ASTRAP's limited ability to reproduce the spatial patterns of 
seasonal wet deposition could affect its usefulness. A fairly strong seasonal dependence 
on model performance is also indicated (best during summer or spring for wet deposition 
and summer for SO| air concentrations). Because of the episodic nature of wet 
deposition and because of the model's better performance over periods where the 
cumulative episodic and nonepisodic deposition constitute a significant fraction of the 
total annual deposition, applications that require development of SRRs (for use in 
strategies requiring yearly deposition amounts) are still feasible. Additional years of 
model evaluation data and spatial error analysis are needed to better determine this 
possibility. 

Although this study helps to provide new insights into model performance 
evaluation (MPE) methods and better understanding of MPE results, we are still unable to 
specify the level of uncertainty in model predictions, and we still lack a fundamental 
understanding of why long-range transport models perform the way they do. Three areas 
of further research could help provide a means to quantify uncertainty and to improve 
our understanding of model performance: (1) the completion of the development and test 
application of the empirical Bayesian uncertainty quantification methodology, (2) the 
estimation of model input and model evaluation data errors and the explicit incorporation 
of these errors into measures of performance of model predictions, and (3) the 
investigation of the sensitivity in model performance by local and global variation of an 
expanded set of key model and model input variables. 





1 INTRODUCTION 

The relationship between causes and effects plays a key role in decisions 
involving scientific understanding and public policy formulation (science-policy 
decisions). For instance, to achieve a particular change in environmental quality, policy 
makers need to know what causes the problems in order to decide what actions to take. 
Unfortunately, however, uncertainty is inherent in any plan that is proposed to reduce 
adverse effects. It is inherent in estimates of the types, probability, and magnitude of 
these adverse effects themselves. It is also inherent in estimates of the effects of the 
policy proposed to solve these problems - both the economic effects and the existing and 
future environmental effects (on ecosystems and humans). The uncertainty in a proposed 
plan of action results from unpredictability caused by the policy maker's lack of 
knowledge or information and the incompleteness or unreliability of the information 
itself. This uncertainty can never be eliminated in science-policy decisions. In certain 
circumstances, however, it can be reduced, and it can be systematically analyzed and 
quantitied so that the policy makers will be informed when deciding which options to 
consider and act upon. Deciding when an action can be taken is an issue based more on 
socioeconomics and political readiness than on the degree of scientific certainty. 

This general understanding of the relationships among causes, effects, and 
science-policy decisions is relevant and can be applied to future policies on acid 
deposition. Knowledge and ability in five important areas are prerequisites for 
developing, evaluating, and selecting the most cost-effective acid-deposition control and 
mitigation options. The areas are (1) an understanding of the causes of acid deposition 
from poUutant source-atmospheric interactions, (2) an understanding of the processes 
involved in the transfer of pollutants in source-receptor interactions, (3) a knowledge of 
the impacts of deposition from atmosphere-receptor interactions, (4) the ability to assess 
risks and perform cost-benefit analyses, and (5) the ability to estimate error and 
uncertainty in the model estimates of causes (i.e., sources of pollutant releases), transfer 
(i.e., transport, deposition), effects (i.e., ecosystem damages, human health impacts), and 
costs (i.e., controls, damages). This study addresses limited aspects of the second and 
fifth factors (atmospheric processes and error inherent to modeling these processes) by 
developing an analytical framework to describe and quantify the error uncertainty in 
long-range transport model predictions. 

The framework is composed of two components. The primary component at the 
onset of this project consisted of a Bayesian probability approach used to quantify 
uncertainty in source-receptor relationships in probablistic terms. Some of the 
preliminary Bayesian results were presented at a joint American Meteorological Society 
and Air Pollution Control Association Conference held at Chapel Hill, North Carolina, in 
November 1986 (see App. A). Because the Bayesian theory is still undergoing 
development and testing, the theory and more formal results of this approach are not 
discussed in this document. The second component uses some novel approaches along 
with more traditional parametric statistical measures of model performance and 
statistical graphics to elicit patterns of apparent error in source-receptor relationships. 
Some of the preliminary results of this component of our study were also presented at 
the conference (also in App. A). The details of this study are given in this report. 
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Several uncertain areas must be dealt with in any integrated acid-deposition 
policy analysis.* These elements of uncertainty can be grouped into four "terms" 
(Fig. 1.1); each term is contingent on the others, and each affects the policy options that 
could be considered. Each term forms an independent system of models and data bases 
for policy analysis. Examples of the models and data that make up each term are 
discussed in the following paragraphs. 

Primary and secondary pollutant emission fields are defined as the source term. 
The spatial and temporal patterns in these fields can be estimated as retrospective 
(under existing controls) or prospective (under alternative control scenarios) source 
emission configurations with a variety of source models. These models can also provide 
cost estimates for various control options under consideration. 

The atmospheric component includes meteorological/climatological data and an 
atmospheric model to process this and other input data, including source data, in order to 
compute spatial and temporal poUutant patterns. Several regional-scale transport 
models exist; they are generally of three basic formulations: Eulerian, Lagrangian, or 
statistical. The Eulerian models are generally more sophisticated in their treatment of 
atmospheric chemistry and physics and are usually applicable to simulation of episodic 
events. The Lagrangian or statistical models generally employ linear first-order 
chemistry and treat atmospheric physics in a highly parameterized manner. These 
models are usually applicable to longer time periods, on the order of a month to a year 
There are also hybrid combinations of the above three basic model formulations. 

Source Term v Atmospheric Term ^Receptor Term 
(Emissions/Cost) (Transmission/Deposition) (Effects/Damages) 

Decision Analysis Term 
(Societal Costs/Benefits) 

Policy Options 
(Success/Failure Probabi l i ty Levels) 

FIGURE 1.1 An Integrated Acid-Deposition Policy Analysis Framework 

*The complexity and uncertainty inherent in the manv !<«„« oo • . . . 
deposition demand the development of an integrated L t h o H , ^'^'/'^ "'''' *°"^ 
facilitate decision making. Details on i n t e g r a l assess^ntfft^^^^^ ' ' " ' " ' " ° ' ^ ' ' ° 
formulation can be found in Lazaro et al. (m6) lnrZ7ote\Va£' ' ° " ' ' 
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The third component of the evaluation matrix is the receptor term. Ecological, 
materials, and health dose-response data (where available), along with output data from 
atmospheric models, may be used with receptor models to compute spatial and temporal 
effects on aquatic and terrestrial ecosystems, materials, and human health. These 
models, or the output from these models can, in principle, be used to compute economic 
damages resulting from the projected effects. 

The last element considered is the decision analysis term. Decision analysis 
models use societal cost-benefit data along with the computational output from the 
previous terms, and where possible, use available observational data (e.g., precipitation 
chemistry measurements) to compute and assign probable error for uncertainty 
distributions in projected decision-related variables. 

Each component of an integrated acid-deposition policy analysis has reducible 
and irreducible levels of uncertainty. Reducible uncertainty is defined as uncertainty 
that can be quantified in some statistical fashion and measurably reduced by improving 
model and model data bases through research and development (e.g., field data collection 
and analysis). Irreducible uncertainty is defined as the spatial, temporal, and economic 
limit for collection of the field data necessary to improve the understanding of source-
receptor relations (these are interrelationships among the source, atmosphere, and 
receptor terms). This uncertainty is of a stochastic nature and prohibits the unique 
specification of the state of the atmosphere and biosphere in any given region of space 
and time. Table 1.1 identifies the specific elements of uncertainty in each of the 
terms. 

This study deals primarily with the composite or aggregate error coming from 
the atmospheric component of an integrated assessment. The error (or difference 
between the predictions of a model and the actual deposition or air quality) results from 
the combined effects of errors or limitations in the input data (such as emissions and 
meteorological data, where relevant) and errors in the algorithms of the model that 
represent physical and chemical processes. The princigal objective of model evaluation 
for assessment purposes is to estimate the probable magnitude and character of this type 
of error. The error in the source term is implicit in the source emissions input data to 
the atmospheric model. Attempts are made to segregate and characterize the error in 
the field observational data used to evaluate model performance. Proper interpretation 
of results is difficult because this error may not be sufficiently quantified and may not 
be fully segregated from model and data input error. Errors and limitations in field 
observational data used to evaluate the model's performance interfere with estimation of 
the model error, usually increasing the apparent error between the observations and the 
predictions. Hence, failure to adequately account for this observational error tends to 
increase estimates of model error. 

The principal causes of uncertainty in modeling the regional transport and 
dispersion of atmospheric pollutants are (1) the inherent spatial and temporal variability 
in the planetary boundary layer, (2) the stochastic nature of the relationships between 
atmospheric state variables and the measurement of meteorological variables used to 
approximate atmospheric state, and (3) the general lack of sufficient understanding of 
relationships between atmospheric conditions and the physical and chemical mechanisms 
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TABLE 1.1 Elements of Uncertainty in an Integrated Acid-Deposition Policy Analysis 

I. Source Term - Treacoent of primary pollucanc mass flux to atmosphere, and Che economic and societal 
cost incurred in modifying that mass flux 

1. Determinacion of source strength and temporal/spatial variation Q(x,c) 

2. Determination of source physics - dynamic operating parameters (e.g., V^ [t], T^ [tl) and static 

characteristics (e.g., d^, h^) 

3. Determination of reduction in source strength and the allocation of that reduction for various 

control strategy options AQ(x,t) 

4. Determination of control costs 

Irreducible 

Specification .of the state of anthroposphere (primary human activity) — the infinite amount of data 
that would be necessary to specify the state of the man-made and natural source emission field 
uniquely in any given region of space and time cannot be acquired 

II. Ataospberie Term - Treatment of transport, diffusion, transformation, and removal for the prediction 
of concentration and deposition fields 

Reducible 

1. Formulation and parameterization of model equations (e.g., the treatment of horizontal and 
vertical dispersion, dry deposition velocities, transformation rates, wet removal rates, vertical 
mats exchange rates, and depth of horizontal transport layer uses empirical data to reduce actual 
concentration/deposition fields to an analogues set of concentration/deposition fields with finite 
degrees of freedom) 

2. Numerical technique selected for the solution of governing equations 

3. Empirical and theoretical data - The accuracy of measurement methods, and the limitations in the 
spatial and temporal resolution of those measurements 

• Horizontal winds ood precipitation fields 

• Vertical profiles of wind, temperature, and humidity 

• Cloud spatial characteristics and type 

• Vertical profiles of cloud water and hydrometeor concentrations 

Irreducible 

Specification of the state of the ataospbere — the infinite amount of data that would be necessary to 
specify the state of the atmosphere uniquely in any given region of space and time cannot be acquired 

III. fleceptor Term - Treatment of deposition, assimilation, transport, diffusion, and physical/chemical/ 
biological interaction for the prediction of ecological and health response 

Reducible 

1. Formulation and parameterization of model equations - dose-response functions 

2. Solution of governing equations 

3. Empirical and theoretical data - limitations to spatial and temporal resolution and accuracy in 
measurement and prediction methods 

• Ambient and ionic concentration data and wet-deposition data used to evaluate atmospheric 
models and drive ecologic models K̂'«>'->-

• Ecological and health effects data used to evaluate model performance 

4. Determination of economic benefits of control 

Irreducible 

• 
Specific.cio., of the acts of Che 61o=l,here - the infinite .mount of d.t. th.t would be n.ces.Ty to 
specify the state of the biosphere uniquely •„ .„, given region of space and time cannot be a""red 
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of transport, transformation, scavenging, and deposition. Equally important are inherent 
uncertainties in the spatial and temporal distribution of source emissions and in the 
observational data for validating model performance, because they are significant 
factors to consider when making policy decisions. Acid-deposition assessments that rely 
on the outputs from models will require the uncertainty in model predictions to be 
characterized and quantified in a form understandable to decision makers. A means to 
do just that would be extremely useful (along with other tools such as cost-benefit 
analyses, risk assessments, and evaluations of control impacts on fuel markets and on 
employment) in providing information necessary for policy formulation. 

The principal objective of this study is to develop a flexible methodology to 
evaluate model performance that would be useful in helping us to understand the 
characteristics and magnitude of the apparent error in model predictions. Because the 
characteristics of apparent model error* can be highly complex, with multiple causes, an 
approach that encompasses a large and varied set of statistical performance measures 
was adopted. This approach recognizes that no single or narrow group of performance 
measures (e.g., traditional distributional statistics designed to measure bias, correlation, 
and variance) can be used exclusively to uncover all the important characteristics of 
model performance. The goal is not necessarily to identify specific weak links in model 
or data-base elements so that the weaknesses can be systematically removed. Although 
it is true that the identification of weak links may help us better understand and 
interpret certain patterns in model performance, our goal is simply to provide 
informative measures of how well or poorly a model performs under different observable 
conditions and constraints. Then results from future model applications can be qualified 
in terms of expected level of error or uncertainty. Such information, if presented in a 
form that decision makers can understand and use, can have extremely important 
implications for policy formulation and decision making. 

Although we have applied the above approach to evaluating the performance of 
an atmospheric long-range transport and deposition model, it can be adapted, with 
appropriate observational data bases, to source term and receptor term models. 

Section 2 of this report describes and gives the basis for selecting the 
atmospheric model evaluated in this study. Revisions and improvements (made from 
1982 through 1985) and limitations in the model and model data base are described. The 
internal model parameter adjustments made for the model performance sensitivity 
evaluation are also discussed in Sec. 2. The data bases used as model input and used to 
evaluate model output are described in Sec. 3. Section 4 provides the general philosophy 
of the model evaluation approach and the specific objectives for evaluating the 
performance of the model. The model evaluation methodology, which includes graphical 
pattern recognition techniques, distributional parametric statistics, and error 
decomposition, is described in detail. The model performance results are given in Sec. 5, 
with a summary of findings and recommendations provided in Sec. 6. 

•Apparent model error is the error in model predictions associated with model input 
data, model parameterization and formulation, and the model evaluation observational 
field; it can be seen when comparisons of model predictions with corresponding field 
observations are analyzed. 
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2 REGIONAL ATMOSPHERIC TRANSMISSION,* DEPOSITION, 
AND AIR CONCENTRATION MODEL 

The Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model was 
chosen for this study for a number of reasons. Among them is its capability for rapid, 
economical, and efficient computations. This attr ibute is especially desirable when 
model sensitivity computations are required. Also, earlier versions of ASTRAP were 
subjects of previous model evaluation and sensitivity studies. These provide a reference 
point to measure any model or data-base improvements. Finally, ASTRAP's easy 
accessibility (an in-house model) and its availability in the public domain played a major 
role in its selection. 

2.1 BRIEF DESCRIPTION OF ASTRAP 

The ASTRAP model (Shannon 1981) consists of three major subprograms, plus 
various preprocessors and postprocessors, generally specific to the model application. In 
one subprogram, simulated trajectories are calculated for a grid of initial locations 
covering North America with a National Meteorological Center (NMC) spacing (300-375 
km). The trajectory subprogram requires time-series plots of transport-wind and 
precipitation fields, generally organized seasonally. Ensemble statistics are produced 
from trajectory sets from four releases daily at each initial location for the period of 
simulation. The mean position and spread of the ensemble trajectories are described by 
fitting bivariate normal puffs to the end point ensembles as a function of t ime since 
release (plume age). Similar horizontal distribution functions are calculated for 
occurrences of wet deposition. 

In a second, independent subprogram, synthetic, horizontally uniform, and 
diurnally repeatable meteorological data and parameterizations are used in a one-
dimensional, vertical integration in which linear chemical transformation, vertical 
diffusion, and dry deposition are treated. Separate sets of calculations are made for 
initial emissions within each of the six model layers in the bottom 800 m of the 
atmosphere. Simulated releases are made throughout the diurnal cycle, and the results 
are averaged. The statistics stored in the vertical integration subprogram, as a function 
of plume age and emission layer, include one-dimensional concentrations of primary and 
secondary pollutants, total airborne pollutant burden, and dry deposition increments. 

Since both the trajectory and vertical integration subprograms produce statistics 
for normalized or unit emissions, they must be combined with an emission inventory as 
well as with each other in order to calculate concentration or deposition values. This is 
accomplished in a third subprogram. The concentration and deposition subprogram, for 
each horizontal element in an emission inventory, selects the trajectory stat is t ics from 
the closest initial location in the trajectory subprogram, adds a bias to correct for any 
difference between the source location and the trajectory initial location, and combines 

•Transmission = transport and diffusion, chemical transformation, and wet and drv 
removal (precipitation scavenging, dry-deposition physics, etc.). 
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them with the one-dimensional statistics for the appropriate emission layer. For 
concentrations, the two-dimensional puffs are combined with the one-dimensional 
surface concentrations of primary and secondary pollutants. For dry deposition, the 
two-dimensional puffs are combined with the one-dimensional dry-deposition increments 
for primary and secondary pollutants and converted to equivalent sulfur or nitrogen, as 
appropriate. For wet deposition, the two-dimensional puffs are combined with the one-
dimensional airborne budgets, already converted to equivalent sulfur or nitrogen. The 
two-dimensional puffs are scaled by the emission rate. 

The atmospheric concentrations predicted by the ASTRAP model correspond to 
an arithmetic average over the period of simulation, not a geometric average. While the 
nature of the continuous bivariate normal density functions fitted to trajectory end-point 
or wet-deposition ensembles is such that predicted values change even if the location 
shifts only slightly (provided enough significant digits are used in calculations), the real 
spatial resolution of ASTRAP simulations of concentrations and deposition is a 
complicated function of the resolutions of the emission inventory, the wind field, and the 
precipitation field. While the resolution of the wind field is coarsest (grid spacing 
300-375 km), wind variability accounts for only a portion of the variance in simulations. 
Although this is only argued heuristically, we assume that the resolution of the ASTRAP 
model is somewhere between that of the wind field and that of the precipitation and 
emissions fields (typically 100-125 km). For simulations with exactly located point 
sources rather than an emissions grid, resolution would be somewhat better. 

The ASTRAP model predicts deposition rather than concentration in 
precipitation, although precipitation-weighted concentration can be estimated by 
dividing the deposition values by the precipitation totals for the period of simulation. If 
the precipitation totals are obtained from the time series of precipitation analyses used 
in model calculations, the method is mass consistent. If the precipitation totals are 
taken from observations at monitoring sites, to the extent that the point concentration is 
used to imply an areal average, some mass inconsistencies may arise. 

2.2 IMPROVEMENT IN ASTRAP MODEL AND MODEL DATA BASES 

It would be useful to look at the evolution of the ASTRAP model over the past 
several years to identify improvements in model components. A convenient reference 
point from which to do this is the model application and performance evaluation study 
conducted under the U.S./Canada Memorandum of Intent (MOI) on Transboundary Air 
Pollution (Schiermeier and Misra 1982). 

Model evaluation results for eight regional-scale sulfur transport and deposition 
models developed by U.S. and Canadian scientists were reported under the MOI study in 
November 1982. The study used a standardized set of 1978 emissions and meteorological 
data to compute monthly (January and July) ambient sulfate (SOJ) and sulfur dioxide 
(SO,) concentrations at 54 SURE network sites (Electric Power Research Institute s 
Sulfate Regional Experiment) and wet sulfur deposition at 3 U.S. MAP3S sites (Multistate 
Atmospheric Power Production Pollution Study) and 10 CANSAP sites (Canadian Network 
for Sampling Precipitation). The ASTRAP model was one of the eight models evaluated 
during the MOI work. 
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Significant improvements have been made to the data bases and to the empirical 
internal parameterization of ASTRAP since the MOI study. They are summarized here. 

2.2.1 Processing of Source Emission Fields 

Emission estimates have changed periodically, particularly in the western states. 
In some of the early ASTRAP MOI work, the emissions for each state or province were 
represented by only a single virtual source. In this report, not only is a 100- to 125-km 
emission grid used in all cases, but also the virtual source for each cell is the emission-
weighted centroid rather than the geometrical center as in the other MOI work, and the 
initial spread is calculated rather than assumed. These changes are probably most 
helpful when receptors are near major source regions, as Whiteface Mountain is near 
Montreal. In addition, the assumption of a distribution in the ambient wind when 
calculating effective plume height now causes the emission gridding to be much less 
sensitive to small changes in stack parameters than was previously the case. 

2.2.2 Processing of Wind and Precipitation Fields 

Wind and precipitation analyses (January and July 1978) for the MOI work were 
performed by the Canadian Atmospheric Environment Service (AES). The analysis and 
preprocessing of meteorological data for this study were done by the University of 
Michigan (UM) and Argonne National Laboratory (ANL). This work is described in more 
detail in Sec. 3.2 of this report. The AES wind data provided for the MOI analysis were 
probably more reliable than the UM analysis data when applied to data-sparse areas, such 
as over the oceans, since the UM analysis was a by-product of a numerical weather 
analysis. A decision was made to modify ASTRAP to use the UM data instead of the AES 
data, since a longer period of record, eventually 24 years, was to become available. Only 
two full years of data (1980 and 1981) were available through AES. Although a detailed 
comparison of the AES and UM analysis methods was not made, it was felt that the 
quality obtained from both data bases was similar. However, no direct comparisons with 
ASTRAP were made to confirm that the two data sets produced comparable results, 
since the ASTRAP version compatible with the UM data incorporated several years of 
gradual model improvement. 

2.2.3 Model Empirical Parameterization* and Theoretical Formulation 

The basic structure of the ASTRAP model has remained the same since the MOI 
work. However, modifications have occurred to incorporate data in the ASTRAP 
parameterization schemes from more recent field experiments. These model 
modifications are briefly described here. 

•The term parameterization refers to a simplified, empirally based, functional form to 
represent physical and chemical atmospheric processes in the model. 
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Dry-Deposition Parameteriration. Improved estimates of dry 
sulfate deposition were incorporated from the work of Wesely and 
Shannon (1984) and Wesely et al. (1985). The diurnal and seasonal 
patterns in sulfate deposition velocities are approximately 50% 
smaller than previous values. The deposition velocities for SO2 
remain unchanged. 

Wet Removal Parameterization. Modifications were made to 
coefficients to account for different methods of analyzing 
precipitation fields. The AES precipitation data had only 12-hour 
resolution; the wet removal algorithm assumed that all of that 
precipitation fell in one of the two 6-hour periods, and thus every 
other time step was, in effect, dry. No such assumption is 
necessary with the UM data. The convective transfer of pollutant 
mass to the free troposphere in precipitation processes was also 
adjusted from an assumed 20% venting to a 50% venting (i.e., 50% 
of the pollutant mass removed from the mixed layer was 
transferred to the free troposphere, where it was subject to 
subsequent wet removal but not dry removal). This adjustment 
seems reasonable in light of some recent data reported in the 
literature. Isaacs (1983) has computed a vertical transport ratio 
for various cloud types and frequency of occurrence over eastern 
Canada. From this formulation scheme, he estimates that on the 
average, 50% of sub-cloud air is pumped through its base each hour 
during the summer and 20% during the winter. However, no 
estimate on the fraction of vertical transport out of the mixed 
layer was given. Liu and McAfee (1984), looking at Ra-222 
vertical distributions, concluded that 55% of continental Ra-222 
during summer months and a much smaller amount during other 
seasons was transported out of the mixed layer. 

Trajectory and Vertical Integration Calculations. ASTRAP now 
continues budget calculations to seven days after release rather 
than the previous five days. 

2.3 MODEL AND MODEL DATA-BASE LIMITATION 

Numerous factors contribute to errors or uncertainty in model predictions. 
These errors may originate from limitations in the input data used by the model, from 
limitations in the model's structural components, or from random, unpredictable 
fluctuations in the atmosphere. 

Some of the key limitations contributing to uncertainty in the model and data 
base of this study are summarized here. 
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1. Assumption of single-layer-averaged horizontal wind field. 
Vertical averaging of wind velocity can induce computational 
errors in transport and dispersion. These errors are caused by an 
averaging of wind shear results, which can affect some layers more 
than others. The errors should be most significant to short-term 
(<24-hour averages) predictions, and should be less important to 
long-term averages (>3-month averages). 

2. Assumption of linear chemistry. The assumption of first-order-
linear kinetics may prove to be justified over seasonal periods, but 
aqueous-phase chemistry and convective cloud physics can have an 
important nonlinear influence on SO2 conversion chemistry over 
shorter time intervals (hours to several days). However, as the 
spatial and temporal averaging region increases, this and other 
nonlinear influences should play a less significant role. 

3. Oversimplification of wet removal processes. Various 
parameterization schemes are used for modeling wet removal as a 
function of precipitation rate and a characteristic scavenging 
coefficient. Precipitation rates can be highly variable both 
spatially and temporally, especially during convective storms. 
Most model parameterization schemes do not account for the 
variation of a scavenging coefficient with (1) season, (2) size 
distribution of hydrometeors, (3) effective area of scavenged 
species, (4) snow type, and (5) storm type, partly for reasons of 
computational practicality and partly because many of these data 
are not routinely available over continental scales. These 
simplifications can distort spatial patterns in wet-deposition fields 
and force positive or negative bias in estimates of the magnitude 
of the deposition amounts. 

4. Oversimplification of dry-removal processes. Dry-deposition 
schemes lack details on the spatial and temporal variations in 
deposition rates. (ASTRAP includes typical seasonal and diurnal 
variations in dry-deposition velocities but assumes these patterns 
are spatially uniform and repeated each day.) The influences of 
atmospheric stability and particle size are not explicitly accounted 
for in the parameterization schemes. Distortions in the spatial 
patterns and amounts of dry deposition, similar to those of wet 
deposition, can occur with these parameterization simplifications. 

5. Limited or nontreatment of vertical atmospheric motions. Large 
convective storms can play a significant role in the redistribution 
of pollutants within the mixed layer and the venting of pollutants 
through the mixed layer. Uplift over frontal surfaces can elevate 
air initially in the mixed layer over wide regions. Not accounting 
for the redistribution from these and smaller systems can produce 
errors in (1) the horizontal pollutant transport, (2) the degree of 
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pollutant dilution, and (3) the amount of pollutants available for 
wet and dry removal. The ASTRAP model has a venting 
coefficient incorporated within its wet-removal parameterization 
but does not address the reentrainment of vented material back 
into the mixed layer. 

6. Omission of orographic effects. Rough terrain and large water 
bodies can have a substantial influence on mesoscale meteorology 
and, therefore, on the transport, dilution, and removal of 
pollutants from the atmosphere. The wind and precipitation 
analysis techniques take orographic effects into account only 
implicitly and only to a small degree. Not accounting for terrain 
effects can produce errors in predicted spatial and temporal 
patterns of atmospheric concentrations and wet deposition. 

7. Spatial and temporal resolution of wind and precipitation 
measurements. Wind data are derived from twice-daily upper-air 
observations over a sparse network (300- to 400-km spacing) of 
measurement stations. Precipitation observations use a denser 
network, but precipitation is also more variable. A lack of better 
meteorological resolution might have little effect on many long-
term simulations, but errors related to geographic effects such as 
lake or Seabreeze regions or precipitation gradients in mountainous 
areas will probably create bias. 

8. Accuracy of emission fields. The nature of potential errors in 
preparing emission inventories is briefly discussed in Sec. 3.1. 

2.4 MODEL ADJUSTMENTS FOR PERFORMANCE SENSITIVITY EVALUATION 
AND SOURCE-RECEPTOR UNCERTAINTY ANALYSIS 

Except for highly statistical models that do not require temporally and spatially 
varying meteorological fields, model sensitivity and uncertainty studies in which all 
possible combinations of model parameterizations and modeling choices are tested are 
not computationally feasible. This is particularly evident when one considers that most 
parameterizations could span a continuous range rather than take only a few discrete 
values, and the sensitivity might vary from one year to the next. In these studies we 
have focused on four parameterizations, with the selections based upon commonality 
with the structure of other models, likelihood of eventual testing with field data, and 
general importance in deposition calculations. The parameterizations examined are the 
dry-deposition velocities for SO,, dry-deposition velocities for SO4, linear rate of 
transformation of SO, to SOT, and bulk wet sulfur removal coefficient. The dry-
deposition velocity and transformation parameterizations are still given seasonal and 
diurnal patterns of variation, but the patterns are scaled to result in different average 
values Similarly, the variation of the wet-removal coefficient during winter in northern 
latitudes is maintained, but the coefficient is scaled by the same factor used in other 
regions and seasons. 
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Varying the parameterizations tested was accomplished by scaling the seasonal 
and diurnal patterns and mean values by 0.5 and 2.0. Combinations of high, low, and base 
cases for the four parameterizations were tested, except for those that were deemed 
illogical (such as high SOJ dry deposition and low SOj dry deposition, which in ASTRAP 
would result in a dry-deposition velocity for SO2 that was only half that for SOp . The 
average value and the extremes of the diurnal and seasonal pat terns of the 
parameterizations whose sensitivities are studied in this report are given in Table 2.1. 

TABLE 2.1 Base-Case Average and Range of ASTRAP 
Parameterizations 

Parameter 

SOo dry-deposition 
velocity^ (cm/s) 

SO^ dry-deposition 
velocity^ (cm/s) 

SO2 to SO4 Crans-
formation rate^ (%/hr) 

S wet-deposition 
coefficient (C)"^ 

Season 

Winter 
Spring 
Summer 
Autumn 

Winter 
Spring 
Summer 
Autumn 

Winter 
Spring 
Summer 
Autumn 

Winter 
Spring 
Summer 
Autumn 

Average 

0.30 
0.40 
0.45 
0.31 

0.12 
0.20 
0.23 
0.15 

0.4 
1.2 
1.6 
0.8 

NA'' 
1.0 
1.0 
1.0 

High 

0.70 
0.80 
0.90 
0.65 

0.25 
0.40 
0.45 
0.36 

1.0 
3.0 
4.0 
2.0 

1.0 
1.0 
1.0 
1.0 

Low 

0.10 
0.10 
0.10 
0.10 

0.05 
0.05 
0.05 
0.05 

0.1 
0.3 
0.4 
0.2 

0.5 
1.0 
1.0 
1.0 

These parameters vary d iu rna l ly in the ASTRAP model. 
The graphs descr ib ing these v a r i a t i o n s , along with 
t h e i r a lgor i thms , can be found in Shannon (1985) . 

^ A = not a p p l i c a b l e , 

c (,p0-5 
Deposition = min 

0.50 

P = p r e c i p i t a t i o n (cm/6 h r ) . 
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In a linear model such as ASTRAP in which plumes and deposition patterns from 
multiple sources are superposed, the sensitivity in the modeled concentrations and 
deposition from multiple sources is relatively less than for typical single sources. For a 
fixed emission rate, any parameterization variation that reduces deposition in one area 
must increase deposition in some other area; thus, many perturbations in individual 
patterns "average out" when the patterns from many sources are superposed. The 
observations used to evaluate the uncertainties of model simulations combine the 
contributions from all sources, although some sources are more heavily affected by 
isolated major sources than are others. A large portion of model uncertainty must be 
associated vith possible nonlinearities when there is an imbalance of SOj and oxidizing 
species, but these nonlinearities cannot be examined in a linear model. 
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3 MODEL INPUT AND EVALUATION DATA BASES 

Three major data bases were selected, analyzed, and screened for evaluating the 
performance of the ASTRAP model. These included SO2 emissions inventory, 
meteorological and ambient SO2 and SO4, and wet sulfur precipitation chemistry data. 
The same data bases were used for the parametric statistical error analysis and the 
Bayesian uncertainty analysis of ASTRAP predictions. A description and analysis of 
these data bases foUow. 

3.1 SOURCE EMISSIONS DATA 

At the time the data-base needs were set for this project. Version 2.0 of the 
NAPAP emissions inventory was available. The NAPAP SO2 inventory consisted of data 
on both point and area source emissions over the continental United States. A point 
source was defined as any stationary source emitting at least 100 tons per year of any of 
the five primary-criteria pollutants with appropriate stack parameters needed to 
determine the effective point source height. These data were available on a stack-by-
stack basis, and included coordinates, height, diameter, effluent temperature, flow rate, 
and annual emission rates. Seasonal emissions were computed from a monthly emissions 
inventory derived from the 1980 NAPAP inventory and source-category fuel-use 
patterns. All emission sources not fitting the point source definition were treated as 
area sources. These sources were primarily institutional, commercial, and residential 
fuel combustion sources; source industrial processes or space heating units were also 
included. Over 90% of the 1980 and 1981 SOg emissions in the United States came from 
point sources, with a majority of these emissions from the electric utility sector. 

The Canadian SO2 emission inventory came from colleagues in the Canadian 
AES. Canadian SO2 emissions come primarily from metal smelters, which exhibit little 
regular seasonal dependencies. Approximately 1% to 2% of the annual U.S. and Canadian 
sulfur emission was assumed to be primary SOT. 

For many applications of the ASTRAP model, particularly those involving source-
receptor matrices, it is important to have emissions spatially resolved more finely (i.e., 
to areas smaller than large geopolitical entities such as states or provinces). This is 
particularly true for predictions at monitoring sites or sensitive receptors lying within a 
source region (such as the Adirondacks in New York); unless the substate horizontal and 
vertical resolutions of emissions are known or estimable, all the emissions of a s ta te or 
province are normally represented by only a single virtual source, which can lead to quite 
misleading near-source results. Knowledge of the horizontal source distribution for a 
distant upwind state (such as Missouri in the case of the Adirondacks) is perhaps of less 
importance, but even then good information on effective stack heights is vital because 
higher initial plumes result in less near-source dry deposition, thus leaving more pollutant 
remaining for downstream deposition, particularly in the wet form. 

Temporal distributions of emissions, in particular seasonal pat terns, are also 
important for modeling; overall sulfur oxides emissions in winter appear to be about 20% 
higher than for spring or fall. The overall secondary peak in SO2 emissions generally 
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occurs in the summer. However, a winter or summer peak in SO2 emissions will depend 
on the region (i.e., distribution of utility vs. nonutility source, fuel use) and on climate 
variations. The seasonal variations can be even larger for individual states, particularly 
those in which the combustion of fuel oil for home heating is important. The monthly 
emission inventories of Knudson (1985) provide excellent information on the seasonal 
variation of utility emissions (which in many cases do not vary greatly) but unfortunately 
little reliable information on the variation of miscellaneous sources, which would include 
residential space heating. 

The emission preprocessor for ASTRAP grids the seasonal emissions from each 
state and province separately. The spatial resolution is the same in all cases; 100-125 km 
in the horizontal and 6 layers to 800 m in the vertical. It might appear that for a cell 
that overlapped geopolitical source regions (for example, the Kentucky-Ohio border), the 
Kentucky sources and the Ohio sources in the cell would have the same virtual source 
location. This is not the case, however. The mass-weighted emission centroid and 
Cartesian standard deviations are calculated for each state in turn; the overall emission 
grid thus has two virtual sources within that cell. For a medium-sized state such as 
Ohio, the horizontal distribution of emissions might be represented by 12 to 16 virtual 
sources. The vertical gridding is accomplished by using climatological fields of wind and 
temperature and a standard plume rise formula (Briggs 1971) to locate the mean 
effective height of the plume and then estimating an initial spread around that height by 
varying the wind speed by a factor of two. This procedure is done to account for the fact 
that the wind speed and consequent plume rise vary with actual meteorological 
conditions and is not an attempt to account for initial dispersion in the vertical, which is 
treated numerically in ASTRAP. 

An emission inventory for 1980, roughly corresponding to NAPAP Version 2.0, 
was initially postprocessed by C. Benkovitz at Brookhaven National Laboratory (BNL) and 
then further processed to produce the emissions input for ASTRAP. For simulations 
specific to other time periods, scaling factors that related 1981 seasonal emissions 
(totaled statewide) to 1980 seasonal emissions and that relited January, April, July, and 
October 1978 emissions to seasonal 1980 emissions (scaled to monthly averages) were 
developed from Knudson (1985). Some additional miscellaneous emission data sources for 
Canadian emissions were also applied for the SURE intensive periods. Except for some 
isolated Canadian point sources, all scaling factors were related to state or province 
totals and were applied to each source within the state or each source not individually 
treated in the province in the NAPAP-2.0/BNL/ANL gridded inventory. 

The map in Fig 3.1 shows the source-receptor grid used for model performance 
evaluation. The eastern United States and southeastern Canada are divided into ten 
regions identified by Roman numerals in the figure. Each region is divided into four 
subregions of NMC dimensions (381 x 381 km at BO^N, 300-375 km over our latitudes of 
interest), and each subregion is divided into nine cells. Emissions were aggregated as 
appropriate. Tabulation of source emissions by season on a regional and subregional basis 
is given in App. C, Table C l . Emissions outside the source-receptor grid area are not m 
Table C 1 However, these emissions (nongrid emissions) are shown in Fig. 3.2 tor 
comparison with emissions from each of the ten regions. Regions II, III, and VI, the 
regions with the largest coal utilization, exhibit the largest seasonal variations. These 
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I — Lake Superior 
I I - Lake Michigan 

I I I - Southwest 
IV - Gulf 
V - North Ontario 

VI — Lake Huron-Erie—Ontario 
V I I - Southeast 

V I I I - Quebec-Nova Scotia-Newfoundland 
IX - Northeast 
X - Atlantic Coast 

FIGURE 3.1 Source-Receptor Grid for ASTRAP Model Evaluation 
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FIGURE 3.2 Seasonal 1980 and 1981 Sulfur Emissions by Grid Region 
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regions also have the majority of coal-fired power-plant capacity. Interannual emission 
variations between 1980 and 1981 were insignificant. This is more clearly shown by 
plotting like seasons for the two-year studies on the same plot. Figures C.2 through C.5 
illustrate the very small change in emissions across the years for the same seasons. 

The distribution of emissions across regions by season and effective plume height 
is illustrated in Fig. 3.3. Three levels are depicted: low (0-200 m), medium (200-400 m), 
and high (400-800 m). The actual emission totals used in ASTRAP, by season and 
emission level, are given in App. C, Table C.2. Low-level emissions in Regions I, IV, and 
VII though X are greatest during the winter because of the prominence of residential, 
institutional, and commercial space heating (a low-level source) during the winter season. 

Errors in estimating emissions arise from multiple causes; the raw data are 
gathered at many sources and initially compiled by state and local government agencies 
with disparate quality-control procedures; the sulfur content of fuel, particularly coal, 
can vary more rapidly than is revealed by intermittent sampling; emission factors in 
many instances are not well determined; and emissions are specific to the operating 
characteristics of individual boilers. The official or NAPAP inventory is periodically 
corrected and improved as better information is gained, but the estimated overall 
inventory for 1980, particularly for SÔ ,̂ has changed little in recent iterations. 

In evaluations of regional sulfur atmospheric concentration and deposition 
models, it is sometimes assumed that discrepancies between observations and predictions 
(other than subgrid effects that can be minimized by combining and averaging point 
concentrations or deposition within a region) are primarily a result of model errors or 
inadequacies. That assumption can be misleading. The model is, in effect, a theoretical 
numerical relationship between emissions and deposition or concentration. Emissions are 
an outside, independent input, although the processing of the emission in a grid is, 
broadly speaking, a component of the process of model application. It is easy to show the 
sensitivity of a linear model to emissions uncertainty for a single source (i.e., x% 
uncertainty in the emission rate causes x% uncertainty in corresponding concentrations 
or deposition), but the response to a comprehensive emission inventory containing errors 
is more complex. One might assume that the errors for different sources were 
uncorrelated and would thus tend to cancel each other in effects on combined deposition 
or concentration, but that is an oversimplification, because some of the errors result 
from inadequate emission factors, each of which might be applied to a number of sources 
of similar type. In addition, since the quality control of some state environmental 
agencies is better than that of others, it is not likely that emissions errors are spatially 
homogeneous. However, NAPAP (interim assessment) has recently estimated the overall 
level of uncertainty in the source emission inventory. The estimate indicates that the 
level of uncertainty in NAPAP 1980 seasonal SO2 emissions, taking a weighted average 
over all source categories and accounting for the uncertainty introduced by use of a 
seasonal allocation factor, is ±13% (NAPAP 1987a). 

3.2 METEOROLOGICAL DATA 

The meteorological data used in these ASTRAP simulations were initially 
processed under the guidance of P. Samson at the University of Michigan. There, 
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horizontal wind fields over the United States and Canada were produced for six 500-m 
layers up to 3000 m (mean sea level), at intervals of 12 hours, for a grid of NMC spacing 
(381 km at 60° N, increasing with latitude). The method of analysis was a form of 
inverse distance-squared weighting of upper air sounding data, from the rawinsonde 
networks of the United States and Canada. Hourly precipitation fields were produced on 
a grid with 1/3 NMC spacing, by averaging the observations (including zeros) from 
reporting stations within each grid cell. 

Further processing of the wind and precipitation fields was necessary before 
their use as input to ASTRAP. The basic trajectory time step in ASTRAP is six hours; 
thus, sets of six hourly precipitation fields were totaled and the wind fields were 
temporally interpolated. The multi-layer winds were combined into a single transport 
layer for ASTRAP by averaging the wind fields through the first three reported layers for 
each grid point for spring and summer, the first two and one-half layers for autumn, and 
the first two layers for winter. The ASTRAP transport layer thus corresponded to a 
depth above ground level of 1500 m in spring and summer, 1250 m in autumn, and 1000 m 
in winter. The wind and precipitation fields were extrapolated and interpolated spatially 
so that there would be no missing values in rectangular grids. The technique used was a 
gradually expanding search around each missing value until one or more analyzed values 
were included, and then inverse distance-squared weighting. The locations of initially 
missing analyzed values of wind and precipitation were concentrated in northern Canada 
and in oceanic areas. 

The wind and precipitation fields were then organized on magnetic tape in three-
month data sets, with winter being December through February, spring being March 
through May, summer being June through August, and autumn being September through 
November. In the simulations in this report, meteorological data for the period 1976 
through 1981 were used. Since meteorological data for December 1975 were not 
available at the time, winter 1976 trajectories were calculated for two months; 
cumulative deposition was scaled to a three-month total in later simulations. Data for 
May 1978 were also missing; thus, spring 1978 was also a two-month simulation with 
subsequent scaling of deposition. Wind and precipitation data for December 1981 were 
not used since it was considered a winter 1982 month (observational data were only 
available for seasons in 1980 and 1981). For simulations of the four one-month SURE 
intensives that took place during 1978, the quarterly meteorological data sets were used 
by skipping records until the fields corresponding to the dates and times of the beginning 
of the SURE intensives were reached, and then calculating trajectories and wet 
deposition statistics until fields corresponding to the dates and times of the ends of the 
SURE intensives were reached. The SURE intensive periods are identified in Sec. 3.3.1 
of this report. 

3.3 FIELD OBSERVATIONS OF PREDICTED VARIABLES 

The data base used to compare against model predictions was a combination of 
atmospheric concentrations of SO4 and SOj and wet SOT deposition. Data collected over 
a three-year period (1978, 1980, and 1981), were considered in this study. These data 
were screened for completeness, and monthly and seasonal averages were computed for 
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statistical comparison with ASTRAP predictions. The data bases and screening 
procedures are described in the following sections. 

3.3.1 Monthly Mean Air Concentration and Monthly Wet Deposition Data 

The air-concentration measurements used to evaluate model performance came 
from SURE. Measurements were obtained from 54 ground-based air-quality stations: 9 
Class I sites and 45 Class n sites. The Class II sites operated on intermittent schedules 
during seasonally representative sampling months (six intensive periods) beginning in 
August of 1977 and ending in October of 1978 (continuous 24-hour samples were collected 
during the intensive periods). The Class I sites operated on continuous schedules from 
August 1977 through June 1979 and had more stringent siting requirements than the Class 
n sites (continuous 3-hour samples were collected during the Class I sampling period). 
More complete descriptions of the SURE data base can be found in the literature 
(Mueller and Watson 1981; Hidy and Mueller 1981; EPRI 1979, 1982, and 1983). Four 
months of data collected in 1978 were available for use in our study. The sampling 
periods included January 10 through February 9 (31 days of winter samples), April 3 
through May 2 (30 days of spring samples), July 1 through July 31 (31 days of summer 
samples), and October 1 through October 31 (31 days of fall samples). Monthly averages 
were computed for the 3-hour samples (Class 1 sites) and the 24-hour samples (Class II 
sites). 

The locations of these sites are shown in Fig. 3.4. The site name, coordinates, 
and average monthly SO| concentrations (January, April, July, and October) are given in 
App. D, Table D.l. These data, along with the SOj data (see App. D, Table D.2), 
obtained from EPRI in February 1985, are in the most recent version of the SURE data 
base. They were used in preference to an earlier version of the data used in the MOI 
work, because some additional hourly data for computation of monthly averages were 
available and because some of the site data were missing in the MOI data base. A 
75%-data-capture screening criterion was used to determine representative monthly 
averages. (The percent of data capture is computed by dividing the number of valid data 
points obtained by the total number of possible data points during the sampling period. 
At least 23 valid days were required to compute a valid monthly mean.) The data-
capture values for each site are given in App. D, Table D.l. The cumulative frequency 
plots and histograms prepared to aid the data screening process are contained in App. D. 

Based on a 75%-data-capture cri- TABLE 3.1 Distribution of Model 
terion, the distribution of sites screened Evaluation Air-Concentration 
for model evaluation is given in Table 3.1. Monitoring Sites by Month 

In addition to the measured air ^ 
concentrations of SOT and SO, from the . _ „ . , . • - r.^= 
SURE network in 1978, a limitld amount «°nth Ambient SO2 Ambient SO^ 
of data on wet sulfur deposition (as 
equivalent SOp was also available for 
comparison with ASTRAP predictions. 
Most of the monitoring sites (eight) were 
from the Canadian CANSAP network 
(sampled monthly), but data were also 

January 
April 
July 
October 

41 
38 
37 
40 

30 
30 
46 
41 
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FIGURE 3.4 Sulfate and Sulfur Dioxide Air Concentration and Wet Chemistry Monitoring 
Sites in 1978 
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available from three MAP3S event sites. All 11 sites operated for only one month, July 
1978. The locations of these sites are also shown in Fig. 3.4. 

3.3.2 Seasonal Wet-Deposition and Ionic Concentration Data 

Two years of information on wet-deposition chemistry collected from seven 
networks operating over eastern North America were available at the time our study was 
initiated. These data came from the ADS, the official repository of North America 
precipitation chemistry measurements. This system provides a convenient computer data 
base for retrieval of statistical summaries of deposition monitoring data. An additional 
four years of data from 1982 through 1985 have just recently become available. Data 
were coUected on an event, daily, weekly, or monthly sampling protocol. The deposition 
amounts were derived from observations in seven networks: (1) the National 
Atmospheric Deposition Program (NADP), (2) Utility Acid Precipitation Study Program 
(UAPSP), (3) MAP3S, (4) Air and Precipitation Monitoring Network (APN), (5) CANSAP, 
(6) Acid Precipitation in Ontario Study-Daily Network (APIOS-D), and (7) Acid 
Precipitation in Ontario Study-Cumulative Network (APIOS-C). Sampling protocols were 
event for MAP3S; daily for UAPSP, APIOS-D, and APN; weekly for NADP; monthly for 
CANSAP; and 28-day for APIOS-C. 

The locations of the wet deposition sampling sites for the eight seasons of 
sampling, 1980 and 1982, are shown in Fig 3.5. Sites are numbered sequentially on a grid-
by-grid basis. Those sites identified with an asterisk indicate co-located sampling. 
Table D.3, App. D, gives the site identifiers and names, coordinates, site completeness 
rating (discussed below), and wet SO^ deposition fluxes. The same table for 
precipitation-weighted ionic concentrations (PWICs) is given in App. D, Table D.4, along 
with a sample calculation for computing PWIC. 

To ensure a meaningful comparison between the model predictions and the 
observational field, a data screening procedure was instituted. The quality of the data 
was based on parameters measuring the completeness with which the sampling data were 
collected Five different measures were used to determine data completeness. These 
parameters are defined in Table 3.2, along with the criteria used to rate or classify the 
samples. Three levels of completeness were assigned: Class A was given to sites with 
the highest rating. Class D to sites with the lowest rating. In addition to completeness, 
the degree to which a site was representative of its region was also considered as a 
screening criterion. Because of the limited amount of information on the effects of local 
sources on precipitation chemistry and the difficulty of obtaining sufficient data on 
sampling site characteristics that might influence the regional representativeness of the 
samples, data screening was based solely on data completeness.* 

•Data screening based on a less stringent data-completeness criterion (Class B sites not 
screened) and on a regional representativeness criterion was used for the International 
Sulfur Deposition Model Evaluation (ISDME) study (Clark et al. 1987a). A comparison 
with our study shows that we screened fewer sites for each season m 1980- ™« 
distribution of sites in the ISDME model evaluation data base are as follows: winter 38, 
spring 46, summer 45, and autumn 42. 
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Wet Chemistry Sites 
Co-location Wet Chemistry Sites 

FIGURE 3.5 Wet Chemistry Monitoring Sites in 1980 and 1981 
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rsr.,sroT^r"rjr:»:"e".r.on,p.,..™...»*s™„ »... 
from 44% in summer 1981 to 71% in winter 1981. 

Estimates of background concentrations ° { ^ ' ^ : : ^ ^ ^ ^ ^ ^ : ^ : ^ 

3.4 BACKGROUND ADJUSTMENTS 

Estimates of background coi 
wiU later pass over man-made poUutant source areas 

TABLE 3.2 Wet Sulfate Sampling Data Completeness Screening Criteria (%) 

Data Screening Class 

Variable 

FCE 
PTPVS 
PCL 
PVSL 
PSMPV 

>80>' ('50)' SSO" (SSO)": 25o'' (.iiO)" 
>90 S80 260 
^95 590 290 
>80 280 260 
>80 280 260 

P«finition» °£ Screening Variables 

PCE - Percent collection efficiency 

Formula 

Total sample volume (convrted to depth) 

Total precipitation depth 

p^.rip. depth a«»°c. "ith valid samples 
Total precipitation depth measurement 
during valid precipitation coverage 

Pprcent of the annual period for which 
PCL = Percent precipitation coverage ^^^=-'^/J. p. ,„i„„ , „ , „ „ , ( U days) 

is available 

ADS Variable Maroe 

SO,.-PCE 

PTPVS ' Percent total precipitation 
associated with valid sample 

length 

PVSL = Percent valid sample length 

PSMPV » Percent of samples with 
measured precipitation 
that are valid 

Percent of the annual period (in days) 

when valid sampling occurs 

Fraction of the sampling periods during 
which precipitation is known to occur 
that resulted in valid precipitation 
chemistry data 

SO4-PPCL 

SO4-PVC 

SO«-VSMP 

•Observations that do not meet any of the above criteria are assigned to Class D. 

bHADP, KAP3S. and UAPSP networks (same percentage, as indicated, for all seasons). 

'Winter PCE for CANSAP, APN, and APIOS networks. 
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TABLE 3.3 Number of Sites that Meet Screening 
Criteria 

Season 

Winter 
Spring 
Summer 
Autumn 
Total 

Winter 
Spring 
Summer 
Autumn 
Total 

Total 

Year 

1980 
1980 
1980 
1980 
1980 

1981 
1981 
1981 
1981 
1981 

1980/ 
1981 

Data 

A 

25 
29 
38 
47 
139 

37 
57 
70 
66 
230 

369 

Screening 

B 

16 
16 
12 
25 
69 

18 
17 
20 
23 
78 

147 

C 

4 
5 
6 
6 
21 

24 
27 
16 
26 
93 

114 

Class 

D 

22 
25 
28 
43 
118 

37 
26 
18 
15 
96 

214 

Total 

67 
75 
84 
121 
347 

116 
127 
124 
130 
497 

844 

products. Not properly accounting for these background levels can result in systematic 
underprediction of observed concentration levels. Recognizing this. Workgroup 2 
investigators during the MOI model innercomparison and evaluation work (MOI 1982) 
estimated an annual background level of 2 kg SOT/ha, which was used to adjust 
predictions of three of the eight models evaluated in the study (some models considered 
emissions over a wider area, and thus the definition of "background" varied). However, 
no data documentation was provided in support of the level chosen. (The Canadian 
modelers felt that a background adjustment to their predictions was necessary and that 
the 2 kg SO^/ha was a reasonable level to use.) 

Nonanthropogenic (natural), uninventoried antliropogenic (man-made), and 
transported intercontinental (natural and man-made) sources of sulfur emissions 
contribute to continental background concentration and deposition flux levels that cannot 
be directly accounted for in regional scale model predictions. To minimize any 
systematic bias in comparing ASTRAP model predictions with observations, a procedure 
was developed to estimate a representative background level to be added to the model 
predictions. Three steps were followed: (1) identification and determination of the 
relative magnitude and spatial distribution of sources that might contribute to 
background levels, (2) examination of the spatial distribution of inventoried sources 
relative to natural sources (to determine if downwind sampling sites can be used as 
representative continental background sites), and (3) consideration of upwind sites 
outside the inventoried source region for establishing a representative background level. 
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Natural background emissions are produced by both biogenic and nonbiogenic 
sources. Biogenic sulfur emissions come from terrestrial (soils, crops, and natural 
vegetation) and oceanic (tidal and innertidal areas and nutrient-rich areas) regions where 
vegetative and microbial processes are active. Nonbiogenic sulfur emissions come 
primarily from geothermal sources such as volcanoes. On a nationwide basis, terrestrial 
sulfur emissions in the continental United States are an estimated 200,000 metric tons 
per year (t/yr) (NAPAP 1985). Oceanic emissions reaching the continental United States 
are nearly equivalent to terrestrial emissions at around 280,000 t/yr. Because of the 
relatively large spatial and temporal inhomogeneity of geothermal emissions, a 
representative estimate of the magnitude of these emissions is difficult to give. 
However, measurements taken during the Mt. St. Helen eruption in the spring of 1980 
indicate that it contributed a smaller amount of sulfur to the atmosphere (e.g., -80 t of 
SO, with SOT concentrations averaging 110 ppm over a 16-day period; Stoiber et al. 
1980) than other volcanic eruptions (e.g., Irazu, Cost Rica, 1963; Pacaya, Guatemala, 
1965) and biogenic sources. 

The relative spatial distribution of natural biogenic sources and man-made sulfur 
emission sources is shown in Fig 3.6. The data show that the range of emission densities 
for anthropogenic sources are approximately 300 to 1,000 times the corresponding range 
of emission densities for natural sources. Due to the spatial distribution of these sources 
and their relative magnitudes, representative natural sulfur background levels 
determined from samples located in North America would not be feasible, at least within 
the scope of this project. (It is too difficult to partition contributions from natural 
versus man-made sources without techniques such as a detailed elemental sample 
analysis based upon principal components.) Therefore, data collected from upwind 
monitoring sites in the global trends network (GTN) west of the source "jventory region 
were examined to determine representative background level(s). The GTN provided a 
data base from sampling sites that were not near continental anthropogenic and 
nonanthropogenic sources. 

The GTN has a total of twelve sites worldwide wfiere precipitation chemistry 
samples are currently being collected. Figure 3.7 shows the location of these sites in 
addition to three sites that have been closed (early 1981 and 1983 and late 1982) • The 
sites identified as new were started after 1981, the period that followed the data base 
used for our comparisons. Average annual SOJ concentration levels measured ^t nine of 
the twelve currently operating GTN sites, along with the eastern North America average 
annual level, are given in Fig 3.8. A sufficient period of record for the toee new 
stations (Kruger National Park, Cape Point, and Torres) was not available at the time of 
preparation of this report. The data show that the annual average concentration of SO^ 
over the high-density source region of eastern North America is over 10 times greater 
than that over remote regions of the world. 

•Background on the evolution of the U.S. precipitation chemistry monitoring program 
from the establishment of U.S.-world meteorological organization baseline sites {ivii) 
to the establishment of GTN (1982) can be found in Dayan et al. (1985). 
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(a) Natural Sultur Emissions (l<g/ha/yr) 

2 Ijess Than 0.125 

01251 To 0.25 

0.251 To 0.5 

Greater Than 0.5 

(b) Man-Made Sulfur Emissions (t /km^) 

o 0-0.12 ^ 0.12-1.50 m >1.50 

FIGURE 3.6 Natural (NAPAP 1985) and Man-Made (Wagner et al. 1986) Sulfur 
Emission Densities 
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N. Ontr i l Pacille 

A. Samoa 
J^T N. P. , . 

Point * AmitardkmlslaXd^ h 

South Pol* 

FIGURE 3.7 Global Trend Network Sites (Dayan et al. 1985) 

Five GTN sites, three in the Pacific and two in Alaska (see Fig. 3.7), were 
selected as being the most representative for approximating background levels in North 
America. Because of the relatively small amounts of precipitation a Point Barrow, 
A l X data from this site were not considered; and because of its inland loca ion in 
^ e " r i i l s k a (70 km from Fairbanks), the data collected at Poker Flat were a^so not 
co^Mered. That left measurements at three sites ~ Mauna Loa, Hawaii; American 
Samoa and the North Central Pacific - for determination of a background level 
S r o n a l var ations of SOT ionic concentrations at each of these sites were not 
seasonal varmtiuus u 4 Qn=/ntor was determined to be a representative 
significant. The annual average of 6 ueq S04/liter was aeterminea „.prii„tions at 
background level. This concentration was added to the seasonal wet SO4 predictions at 
each^ampling site (subsequent to adjustment by seasonal precipitation amount at each 
site). The site-specific background values are given m Table D.3 in App. u . 
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FIGURE 3.8 Mean Annual Ionic Concentrations of Sulfate at 
Glolial Trend Network Sites 
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4 OBJECTIVES AND METHODS FOR MODEL PERFORMANCE EVALUATION 

Users need to know that models can be applied with reasonable confidence to 
predict changes in deposition and/or ambient concentration that are associated with 
changes in meteorological conditions and source emissions. This confidence is of critical 
importance if models are to be used for establishing source-receptor relationships under 
current emission control conditions and for evaluating the effectiveness of any future 
options for emission-control strategy. Error evaluation and uncertainty quantification 
help establish confidence in the use of models for policy formulation. 

Error, as used here, is the difference between true values and corresponding 
predictions. Apparent error is the difference between observed values and corresponding 
predictions. Thus, apparent error includes the effect of errors in observations (defined as 
the difference between true values and measurements). Uncertainty, applied to a model, 
generally pertains to the range of expected error between the model predictions of a 
variable and the observed values of that variable. Since the model ordinarily predicts a 
number of values with varying errors, both error and uncertainty must be described in 
terms of distributions of values. We seek various measures of those distributions, 
including means, standard deviations, differences among various parts of the model 
domain, and ideally, a representation of the distribution itself. For example, uncertainty 
could be quantitatively expressed in terms of the joint conditional probability distribution 
for a set of true values Xj, Xj, ..., Xj,, given the corresponding model predictions 
X., x , X . The task of model evaluation is to estimate that distribution, or at least 
certain measures of it, based in part on samples of apparent error. It should be 
emphasized, however, that uncertainty distributions reflect our knowledge of the model's 
performance and thus are subject to change as increased information becomes 
available. For example, we might expect that the mean square error between a given set 
of predictions and true values would become better defined (i.e., the variance about the 
expected value would become smaller) as more data become available for evaluation of 
the model. 

As noted in the introduction to this report, a Bayesian (or Monte Carlo or some 
other) statistical theory is required to estimate the probability distribution described in 
the previous paragraph. Because of project and data constraints that we encountered 
(i.e., the treatment of the distribution of observational error) in the development of the 
Bayesian theory, our initial primary objective of developing an analytical framework for 
science-policy uncertainty quantification could not be carried through. However, we do 
believe that the objectives of the methodology for evaluating model performance 
described in the following paragraphs will provide some new and useful insights on 
understanding the characteristics, including magnitude and spatial patterns, of the 
apparent error in model predictions. 

Our general objective is to develop a better understanding of the performance 
characteristics and apparent error of a long-term regional transport and deposition 
model. We intend to determine how well the predictions from the "standard" version of 
the ASTRAP model compare with corresponding observations. Another goal is to discern 
and quantify differences in spatial and temporal patterns in seasonal observations and 
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predictions. With respect to temporal patterns, we are interested in (1^ how well the 
relative magnitudes of the maximum seasonal SO4 deposition and SO4 and SO2 air 
concentrations (DAC) are reproduced in time, (2) differences in performance found in 
seasons of the same year (intraseasonal performance), and (3) differences in performance 
found in seasons of separate years (interannual performance). With respect to spatial 
patterns, we are interested in (1) the location and magnitude of maximums, and (2) the 
location, orientation, shape, and gradient in the DAC contours. 

We also intend to find out, in an operational sense, how the relative performance 
of several parameter-adjusted versions of ASTRAP change over time and space. The 
issue of why, in a diagnostic sense, a model performs well or poorly is of key importance 
to model component and model data-base development and improvement. A diagnostic 
approach that employs, for example, sophisticated global sensitivity analysis is beyond 
the scope of this particular study. The results from this study should, therefore, be 
viewed from an application or operational perspective on evaluating and comparing 
models and model sensitivity rather than a diagnostic or research-oriented perspective on 
evaluating model performance and model component improvement. 

This section of our report outlines the basis for selecting the performance 
evaluation measures and data analysis methodology. The selected statistical perform
ance measures and methods are then described. With this foundation, the results from 
the model performance and sensitivity evaluation are presented and discussed (Sec. 5). 
Residual and scatter error patterns are presented with the aid of residual histograms, 
scatter plots, and time-series graphs along with univariate and difference statistical 
performance measures. The model performance sensitivity patterns resulting from 
internal model parameter variation are shown, and the relative and absolute magnitudes 
of model error are discussed. The decomposition of mean square error into its 
systematic and unsystematic components is used to quantify the potential magnitude of 
error reduction that can be achieved with the adjustment of model parameterization. 
The spatial, temporal, and bias components of error are quantified through decomposition 
of parametric statistical measures. Spatial patterns in model predictions and 
observations are displayed through interpolation among data points with least-squared 
regression and simple and universal kriging. Finally, some potential factors that may 
influence apparent model performance are investigated. They include the sampling 
protocol, geographic region, pairing observations and predictions as precipitation-
weighted ionic concentrations versus mass deposition flux, and spatisil scale of data 
aggregation. 

4.1 SELECTION OF PERFORMANCE EVALUATION MEASURES AND METHODS 

Several factors were considered in selecting the statistical evaluation measures 
to be used in meeting our study objectives. The major factors included (1) the spatial 
and temporal resolution of the ASTRAP model and associated data bases, (2) the 
availability of observations of sufficient quality, quantity, and spatial distribution, and 
(3) the potential applications the model results would serve. Each of these factors 
constrains the applicability and interpretability of statistical performance measures. For 
example, the course spatial (=130 km) and temporal (=1 month) resolution of ASTRAP and 
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the sparse distribution of the precipitation chemistry data can hamper interpretability of 
standard parametric distributional statistics. The intended model applications can 
similarly influence the selection of performance measures to be used in the model 
evaluation. If it is important to replicate the upper end of the frequency distribution of 
observed short-term (1-hr to 24-hr averages) ambient concentrations, then distributional 
statistical measures, such as bias, correlation, and cumulative frequency plots, are 
important. On the other hand, if it is important to replicate spatial patterns in observed 
intermediate (monthly to quarterly periods) to long-term (annual period) deposition fluxes 
or ionic concentration fields, then graphical pattern recognition techniques (e.g., contour 
plots) and descriptive spatial statistics (e.g., decomposition of mean square error) are 
important. 

Another issue in the choice of performance measures is determining the 
interpretability or significance of the computed statistic. In "significance tests" (e.g., 
"p value" confidence intervals, Mason-Whitney test, Bartlett's test), the data are assumed 
to be statistically independent, but this is not the case in our study because of the spatial 
correlation inherent in our data set. Also, significance testing is not recommended when 
the extent of violation of the assumptions underlying the particular test is unknown, and 
the power of the test is as much a function of the number of data points, the sample 
distribution, and the test itself, as it is a function of the true relationships contained in 
the data (Wilmott 1981). Therefore, these significance tests are not used to determine 
the probability that the differences between predictions and observations were not 
obtained by chance. In addition, parametric measures such as mean bias error, variance, 
and correlation cannot alone reveal the true spatial characteristics of the data. 

As a result of the above considerations, it was determined that standard model 
evaluation methods, such as those recommended by the American Meteorological Society 
(AMS) on quantifying and communicating model uncertainty (Fox 1984), cannot be used 
exclusively. An approach was selected that combines the more traditional distributional 
measures from the AMS with some new measures that allow for decomposition of error 
components and a more robust analysis of spatial, temporat, and bias error. Some of 
these measures are described briefly in the next section and more completely, with full 
mathematical detail, in App. E. 

4.2 DESCRIPTION OF PERFORMANCE EVALUATION MEASURES 
AND DATA ANALYSIS METHODOLOGY 

Statistical measures for evaluating model performance can basically be 
categorized as parametric or nonparametric techniques. Parametric statistics assume 
the data can be fit to some standard distribution function, such as a Gaussian or normal 
distribution. Nonparametric data analysis techniques (such as the bootstrap method from 
Efron and Gong 1983) and numerical methods (such as principal component, numerical 
correlogram, time-series, sensitivity, spectral, and empirical orthogonal function 
analysis) were considered but were beyond the scope of this particular study. Therefore, 
our study was restricted to the use of parametric statistics. The parametric statistical 
measures considered can be grouped as either graphical analysis or descriptive analysis 
techniques. The graphical techniques listed in Table 4.1 can represent in a meaningful 
way a model's ability to accurately characterize observational data. This representation, 
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in turn, provides a valuable means to TABLE 4.1 Graphical Statistics Pattern 
identify spatial and temporal patterns of Recognition Techniques 
model performance and the sensitivity of 
these patterns to perturbations in the .— 
model's empirical or theoretically derived „ , __ 

'̂  „, , . . Sca t t e r p l o t s 
parameters. The descriptive measures formalized b i a s - s c a t t e r e r r o r p lo t s 
listed in Table 4.2 express the patterns of F rac t iona l b i a s - s c a t t e r e r r o r p lo ts 
performance identified through graphical Residual his tograms 
analysis in quantitative terms. The Cumulative frequency d i s t r i b u t i o n s 
measures help a model evaluator to discern Box p l o t s 
and compare levels of acceptable Obse rva t ion /p red i c t i on histograms 
performance among several models or Residual v s . p r e d i c t i o n histograms 
model versions, especially if sensitivity to Time-ser ies p l o t s 

, . , . . ^ , .. • Contour p l o t s 
adjustments in model parameters is a , Krioed 
component of the model evaluation study. , unkriged 

Descriptive measures are of two ~ 
types: univariate measures and difference 
measures. Univariate (single variable) measures can be used alone or in combination with 
graphical displays or difference measures^ to express means, mean squares, and 
variances in observations and model predictions. Difference measures (two variables) are 
of three kinds: arithmetic indices, nondimensional indices, and logarithmic indices. 
Arithmetic indices can be used to express bias, variance, correlation, and mean or root 
mean square error between observations and model predictions. Nondimensional indices 
are valuable measures when the comparison of the performance of different models 
and/or at different time periods is important. These measures can also be combined with 
arithmetic indices or graphical displays to quantitatively characterize the patterns and 
components of error. Finally, logarithmic indices are useful, in combination with 
nondimensional indices, as an aid in ranking model performance. These indices are also 
an important component of the Bayesian uncertainty theory as developed under this 
project. 

The following discussion describes some of the graphical techniques and the 
principal descriptive statistical methods used in evaluating ASTRAP model performance. 

4.2.1 Pattern Recognition through Data Display Techniques 

The most commonly used data displays in model evaluation studies are scatter 
plots of model-predicted (P) versus "reliable" field-observed (O) variables and frequency 
histograms. The relationship between P and O can be well represented by sca t ter plots in 
combination with descriptive performance measures. Scatter plots are particularly 
helpful in uncovering underlying systematic differences between P and O as well as 
troublesome extremes. The spatial dependence of model performance, if such 

•When used with difference measures, univariate measures can be used to decompose 
error into its spatial, temporal, and bias components. 
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TABLE 4.2 Descriptive Statistical Model Performance Measures and Indices 

tftiivariate Measures 

(3, P - Mean Observation and Mean Prediction 
a o - Standard Deviation of Observations and Predictions 

CV '' - Coefficient of Variation of Observations 
CV - Coefficient of Variation of Predictions 

MSO - Mean Square Observation 

MSP - Mean Square Prediction 
MSTO - Mean Square Temporal Observation 
MSTP - Mean Square Temporal Prediction 
MSSO - Mean Square Spatial Observation 

MSSP - Mean Square Spatial Prediction 

Difference Measures 

Arithmetic Indices 

1. Bias Error 

MBE - Mean Bias Error 

MABE - Mean Absolute Bias Error 

MRPP - Mean Residual-Prediction Product 

FABE - Fractional Average Bias Error 

MRR - Mean Residual Ratio 

RMR - Residual Mean Ratio 

% 
2. Correlation and Variance 

R - Coefficient or Correlation between Observations and 

Predictions 
COV, - Covariance 
R - Coefficient of Correlation between Residuals and 

Predictions 

COV, - Residual Covariance 
FSE - Fractional Scatter Error 

VAR - Variance 
STD - Standard Deviation 

Coefficient of Variation of Residuals 
Relative Prediction to Residual Scatter 

CV, 
RPRS 



44 

TABLE 4.2 (Cont'd) 

Mean and Root Mean Square Error and Error Decomposition 

MSE 
RMSE 
MSE^ 
MSE, 

MSTE 
MSSE 
RDMSE 

- Mean Square Error 
- Root Mean Square Error 
- Mean Square Error Unsystematic 
- Mean Square Error Systematic 

MSE - Additive Systematic MSE 
a 

MSE - Proportional Systematic MSE 
MSE? - Interdependent Systematic MSE 

- Mean Square Temporal Error 
- Mean Square Spatial Error 
- Relative DMSE (as percent of the normalized MSD) 

Logarithmic Indices 

MSLE 

MLE 
VLE 
SLE 
GMSLE 
GMLE 
GSDLE 

- Mean Square Logarithmic Error 
MSLTE - Mean Square Logarithmic Temporal Error 
MSLSE - Mean Square Logarithmic Spatial Error 

- Mean Log Error 
- Variance Log Error 
- Standard Deviation Log Error 
- Geometric Mean Square Logarithmic Error 
- Geometric Mean Log Error 
- Geometric Standard Deviation Log Error 

Nondimensional Indices 

IDA - Index of Agreement 
DMSE - Dimensionless Mean Square Error 
FABE - F rac t iona l Average Bias Error 
FSE - F rac t iona l Sca t t e r Error 
NMBE - Normalized Mean Bias Error 
NSE - Normalized Sca t t e r Error 
RPRS - Re la t ive Pred ic t ion to Residual S c a t t e r 
RDMSE - Re la t ive DMSE (as percent of the normalized MSO) 
RSI - Rank Score Index 

dependence exists, can be displayed on scatter diagrams by identifying groups of data 
points by region or area. Frequency histograms are useful in displaying the distribution 
and degree of bias in model predictions (residual histograms) and are useful in showing 
how that bias varies over different time periods. The relative distributions of predictions 
versus observations and the shape of those distributions can also be displayed with 
frequency histograms. 

The analysis of time-series plots can provide a clear picture of temporal patterns 
in P and O. For example, a time-series plot can show the relative model performance 
during climatologically different time periods and reveal the t ias and temporal error in 
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that performance. However, these plots can be difficult to interpret when P and O 
trends are highly variable. The intraseasonal and interannual differences in observation 
and predictions and the size of the residual can be visually displayed and easily identified 
with these plots. Observations from an individual monitor and averaged observations 
from multiple monitors spatially representing the model resolution-size receptor grid can 
be shown and evaluated. The time-history of precipitation amounts can also be displayed 
and correlated with the residual time-history. Until recently, only a limited historical 
record of reliable observational data (e.g., wet SO4 deposition) was available to model 
evaluators (only two years were available at the beginning of this study). As a result, 
time-series plots have not been used often for evaluating long-term predictions from 
regional-scale transport and deposition models. The reliable data available since 1980 
have made the use of time-series evaluation of seasonal or monthly deposition 
predictions more feasible. Previous studies using time-series plots have been done with 
short-term predictions (averaging <24 hr) for short time periods (a month or so 
duration). McNaughton et al. (1980, 1981) used time-series plots in evaluating the 
performance of the Regional Air PoUutant Transport (RAPT) model's predictions against 
SURE daily SO4 air concentration observations. 

The relative bias and scatter in model predictions can be visually displayed with 
fractional and normalized error plots. Fractional error (FE) plots provide visual 
information about the overaU goodness of fit between observations and predictions, in 
addition to revealing patterns in bias and scatter error. Fractional scatter error (FSE) in 
model predictions are plotted on the ordinate, while fractional average bias error (FABE) 
in those predictions are plotted on the abscissa. The fractional bias and scatter are 
computed as follows: 

FABE = ^ < ° - ^ > ("•!) 
0 + P 

, S E = ^ ^ ^ V ^ ' (4.2) 
a + a 

0 p 

where: 

O and P = the overall average observation and prediction, and 

0 and a = the standard deviation of observations and predictions. 

FABE measures how weU, on the average, a model estimates observational fields. If 
FABE is less than +0.67 and more than -0.67, model predictions are withm a factor of 
two of observations. As FABE approaches ±2.0, the model is producing extreme over- or 
underpredictions. FSE measures how well, on the average, a model estimates the scatter 
among observations. It represents the difference between the standard deviations of 
observations and predictions. If FSE is less than +0.67 and greater than -0.67, the scatter 
in model predictions is within a factor of two of the scatter in observations. As FSE 
approaches ±2.0, the model predictions of scatter in the observations are extreme. 
Fractional error plots have been used primarily to describe the performance of short-
term Gaussian air quality dispersion models over local transport scales (Cox et al. 
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1985a, 1985b; Irwin and Smith 1984). The use of these plots, which employ fractional 
differences in means and standard deviations of observations and predictions, may not be 
appropriate for quantifying the bias and scat ter error for a long-term regional-scale 
transport and deposition model. The reason is because of the spatial and temporal 
differences between short-term, local-scale air-quality models and long-term, regional-
scale models (i.e., ASTRAP). The extreme end of the cumulative frequency distribution 
is important in evaluating short-term air-quality models, while cumulative deposition 
totals and mean concentrations are more important in evaluating long-term regional 
models. Therefore, FE plots are used in our evaluation of ASTRAP primarily to display 
sensitivity patterns in internal model parameter bias and scat ter error. 

The magnitude of the bias and scat ter error, in addition to the patterns of 
sensitivity in this error, can be displayed with normalized error (NE) plots. The 
normalized scat ter error (NSE) in model predictions is plotted on the ordinate while the 
normalized mean bias error (NMBE) is plotted on the abscissa. The normalized bias and 
normalized scat ter error are computed as follows: 

NMBE = , / 7 - ^ - — V (4.3) 
V(% 

a 
r 

Vc-'o • 

• 0 ) 

p 

a ) 
P 

NSE = , / ( „ :„ , (4.4) 

where: 

r = 4 y 0. - p . , 
N .^. 1 i ' 

1=1 

rj = residual or difference between observation and prediction, and 

N = number of observation-prediction pairs. 

The distance of each data point from the origin on an NE plot is proportional to the mean 
square error (MSE) in model predictions. Model mean biases and random variances are 
accounted for in the MSE. This measure is computed as follows: 

MSE = i j (0 . - P . ) 2 = i j . . 2 (4.5) 
1 = 1 1 = 1 
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The mean bias portion and random variance portion of the MSE error is shown in the 
expression below, which can be shown to be equivalent to Eq. 4.5. 

MSE = ^ a ' + ( ; )^ (4-6) 
N r 

The spatial patterns in model performance and the apparent error in those 
patterns are determined through a geostatistical spatial extrapolation technique called 
kriging. A description of the kriging approach is given in Sec. 5.3.2 and App. L. 

4.2.2 Descriptive Statistical Performance Measures and Indices 

As mentioned earlier, the majority of the statistical performance measures listed 
in Table 4.2 are described in detail in App. E. Some of the individual or combined 
measures or indices that play a key role in characterizing model performance are 
described here. These measures include the index of agreement (lOA), dimensionless 
mean square error (DMSE), relative DMSE, mean logarithmic error (MLE), variance 
logarithmic error (VLE), rank score index (RSI), systematic mean square error (MSES), 
and spatial/temporal/bias error components. 

The lOA is greater than or equal to zero and smaller than or equal to one. It is 
defined by Willmott (1981) as follows: 

N 

^ (P. - 0 . )^ 
i=l ^ i 1 (4.7) 

lOA = 1 - N 

J l [|pii * loin' 

where: 

P; = the model prediction over grid cell i, 

O- = the model observation over grid cell i, 

P! = P j - O , 

Ol = 0. - 0 , and 
1 1 

0 = the mean observation over all grid cells. 

The right-hand side of Eq. 4.7 is the ratio of the mean square error and potential error. 
This index specifies the degree to which the predicted and observed deviations about the 
mean observation correspond. In a formal sense, it is not a correlation or association 
measure but rather a measure of the degree to which a model's predictions are error-
free" (assuming that the mean observation is "error-free"). The lOA is a standardized 
measure that provides a means to compare the performance of different models or model 
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versions, or to compare model performance under different atmospheric conditions or 
during different time periods. It accounts for both bias and scat ter in model predictions 
but is more sensitive to scat ter than bias in its indication of the relative amount of the 
apparent model error. The closer the index is to 1.0, the bet ter the model performance. 

The DMSE is defined by Hanna and Heinhold (1985) as follows: 

N 

} , (P. - 0 . ) ^ 
DMSE = ^ i i— (4.8) 

This measure, like lOA, accounts for both mean biases and the scat ter or random 
variations in model predictions. Unlike lOA, DMSE seems to be more sensitive to 
changes in bias error than to changes in scat ter error or variance (see discussion and data 
plots in Sees. 5.2.1 and 5.2.2). The smaller the DMSE, the bet ter the model 
performance. As defined, the measure places more weight on higher concentrations 
because the prediction-observation differences are more likely to be the largest at the 
highest concentrations. Confidence intervals on the difference in DMSE between two 
models or model versions (DMSE^ and DMSE2) can be assessed with a Chi-square 
evaluation, if the expected differences (DSME^ - DSME2) are normally distributed and 
DSME^ and DSME2 are independent. Because both of these conditions are not likely to 
be met, if the data set is small (N < 100), a procedure for bet ter defining confidence 
limits is desired. The bootstrap method developed by Efron and Gong (1983) provides a 
means to establish confidence intervals for small data sets . The computer-intensive 
requirements of this method alone, with limits imposed by project budget, prohibited the 
use of bootstrapping procedures in our study. 

The relative DMSE is the total error expressed as a percent of the dimensionless 
mean square observation. It provides a less biased measure of error across short time 
periods (seasonal or monthly) than the relative MSE used by Fay et al. (1985) to quantify 
the "model" error for annual period(s) of deposition.^ The RDMSE is computed as 
follows; 

RDMSE = "^^^<° : ^> • 1002 = 2 M S E j 5 ^ ^Q^^ (4.9) 
MSO/0^ "^° 

where the numerator is the DMSE and the denominator is the dimensionless mean square 
observation. The dimensionless mean square observation is computed as the sum of the 
squared observations divided by the square of the mean observation. 

The MLE and the VLE were measures derived primarily for use in the Bayesian 
model development (Ball 1986). Some of the parameters of more normally distributed 

•Variability of mean deposition across annual time periods is less than the variability 
across seasons (e.g., winter/summer). 
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data that resulted from taking logarithms made the use of these measures as bias and 
variance indicators attractive. These measures are computed as follows: 

•"•^-iX"- (f)i " • ' " > 

v«-s^X[ - ( f )> - jX 
2 

0^ " 
m , p ^ i (4.11) 

A dimensionless index that combines bias- and scatter-measuring properties of 
the lOA, VLE, DMSE, and MLE would be a very useful measure for comparing the 
performance of different models or the performance of varying internal parameters of 
the same model. It would also provides a more robust measure for ranking model 
performance. This dimensionless RSI can be derived from Eqs. 4.7, 4.8, 4.10, and 4.11 as: 

„ „ , lOA (DMSE * MLE • VLE) • 1 (4 lo) 
RSI = YoK 

An errorless model is indicated by an index of 1.0, while an RSI greater than 2.0 
indicates poor model performance. Average model performance can be assumed with 
values somewhere between 1.65 and 2.00. 

Willmott (1981 and 1982) suggests a means to decompose MSE into its systematic 
and unsystematic components. This provides a means of calculating the potential error 
reduction that can be achieved while studying the sensitivity of a model to variations in 
model-dependent variables. The systematic MSE measures reducible model and data
base uncertainty and is computed as: 

MSE,= i j ( P i - O ^ ) ' ("-13) 
1=1 

where ^. = a + b • O-, and a and b are the intercept and slope of the regression of P on 
0 . An ordinary least-squares fit can be assumed under the proposition that P is linearly 
dependent on O. The assumption of P as the dependent variable and O as the independent 
variable is particularly important, since it implies that O is error-free and that all the 
error variance is contained within P. With very good observational data, this assumption 
is quite reasonable, although O is rarely, if ever, error-free (Willmott 1981).^ 

•Willmott also suggests that systematic error can be further decomposed into an 
additive, proportional, and interdependent component (see App. E), but the utility of 
such decomposition is not immediately known. 
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The unsystematic component of MSE can be assumed to be a measure of the 
potential accuracy (explained in the following text) of the model and data base and can 
be computed as: 

N 

MSEu= I J l (Pi - P i ) ^ ("-l") 

or, more efficiently, as: 

MSE^ = MSE - MSEg (4.15) 

The error expressed in Eqs. 4.13, 4.14, and 4.15 can be more easily interpreted, in units 
of P and O, by taking the square roots of the MSE. With a good model, the systematic 
differences should approach zero, while the unsystematic differences approach the root 
mean square error: RMSE = [(RMSE^)^ + (RMSE^)^]^'^. If the O and P differences 
described by RMSE can be described by a linear function, these differences should be 
relatively easy to dampen with simple model adjustments, for example, revisions to the 
model parameterization. In other words, without change or significant changes to the 
model's structure (governing equations), it should be possible to reduce the systematic 
portion (RMSEg) of the apparent model error. This implies that the unsystematic portion 
(RMSEy) can be interpreted as a measure of potential model accuracy (Willmott 1982). 

Finally, MSE can be decomposed through analysis of variance into its bias, 
spatial, and temporal components. By taking the sum of squares within groups (over all 
similar time periods, e.g., winters, summers, etc.) at each receptor grid region, the mean 
square temporal error can be computed as follows: 

M K. 

.^ , , ^, [0 . , - p . , - <r .>] 
MSTE = '=^ '^^^ '"^ „ '^ ^ (4.16) 

N — n 

By taking the sum of squares between groups over all receptor grid regions, the mean 
square spatial error can be computed as follows: 

r K. [<r.> - « r » ] ^ 

'̂ssE = iii -^—Irn. <*•") 

where: 

0:i^ = observation at receptor i during time period k, 

Pjl̂  = prediction at receptor i during time period k, 

M = cumulative total number of nonzero observation sites 
producing at least one observation-prediction pair. 
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K- = number of observations (seasons or monttis) at site i, 

M 
N = i K = total number of nonzero observation-prediction 

1=1 1 

pairs, 

i = receptor index, 

k = time period index, 

K. K. 

<'î  = i ^l] °ik - l[ hJ 
1 k = l k.= l 

= the mean residual at receptor averaged over all time periods, and 

M "̂ i M "̂ i , 

= the mean residual over the entire field of values. 

Equations 4.16, 4.17, and 4.18 can now be used to decompose the MSE (Eq. 4.5) 
into its temporal, spatial, and bias components, as: 

MSE = ^ MSTE + ^ MSSE + « r » ^ (4-19) 

The derivation, modification, and use of Eq. 4.19 is discussed in Sec. 5.3.1, 
Eq. 5.8, with results of the analysis of the ASTRAP prediction of wet sulfate deposition 
presented. Also discussed, with results, is the derivation of explained variance in terms 
of a spatial and temporal component. This measure of model performance is very useful, 
since the bias-induced observational error is corrected for in the expression derived for 
the explained variance in model predictions. 
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5 MODEL PERFORMANCE AND SENSITIVITY EVALUATION RESULTS 

Regional-scale Lagrangian models such as ASTRAP have a relatively coarse 
spatial and temporal resolution. ASTRAP has a temporal resolution of one month and a 
spatial resolution of 100 to 130 km. The choices available for pairing of observations and 
predictions are restricted by the spatial and temporal resolution constraints of the 
model, the constraints of the observational data base (e.g., number of valid and 
representative sites and number of samples per site), and the error that can be 
introduced by data aggregation (time and space scales). Our comparisons were restricted 
by the number of data points available to unpaired data or data paired only in time. In 
addition to individual observation and prediction pairings in time (by season), several 
levels of time and space aggregation were examined. Spatial aggregation was taken on a 
unit-grid increment (30-40 km), 9-grid increment (300-390 km), and 36-grid increment 
(1,200-1,560 km) basis.^ Simple arithmetic averages were computed for each 
aggregation level. Observations and predictions were paired on a unit-grid basis, and 
performance results were reported on this basis. The effects that aggregating 
predictions and observations over large spatial scales has on model performance are 
discussed under special topics in Sec. 5.4. Temporal aggregation of seasons was taken 
over one year (four seasons), two years (eight seasons), and like seasons (four groups of 
two seasons), with a season being as previously defined in Sec. 3. 

Our results are reported under four subject areas. The residual and scatter 
patterns in model performance are brought out with the use of scat ter , time-series, and 
residual histogram plots (Sec. 5.1). A variety of statistical measures of bias and variance 
are used in describing the patterns observed with the data graphics. The evaluation of 
model sensitivity to variation in internal model parameters is covered next (Sec. 5.2). 
Fractional error and normalized error plots are used to display sensitivity patterns to 
variations in internal model parameters. We then provide an analysis of spatial patterns 
through the use of contour plots and decompose error into its bias, spatial, and temporal 
components (Sec. 5.3). Finally, in Sec. 5.4, a number of special topics are covered on 
factors influencing apparent model performance and interpretation of model results. The 
results should be viewed collectively because no single group of performance measures 
(e.g., descriptive difference statistics, nondimensional indices, graphical statistics) can 
describe all the aspects that are significant when judging how well a model characterizes 
observational fields. Even when viewed collectively, if the error associated with the 
computation of field sampling and data analysis is not well defined, the interpretation of 
model performance results, particularly the identification of why the model performs 
well or poorly, becomes exceedingly difficult. 

•Winds for ASTRAP are analyzed over an NMC grid cell, while precipitation is analyzed 
over a one-third NMC grid cell. The NMC grid cells (each composed of nine unit-grid 
increments) are displayed in the model evaluation grid. Fig. 3.1. The model evaluation 
region (MER) used in this study is composed of 360 of these unit-grids. The relative 
scale of the 9-grid (40 per MER) and the 36-grid (10 per MER) increments can also be 
seen in Fig. 3.1 (designated by small let ters and roman numerals). 
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5.1 RESIDUAL AND SCATTER ERROR PATTERNS 

Residual and scatter performance measures and graphical data displays can help 
to reveal some of the temporal patterns in model performance. These patterns are 
presented and discussed for the 1978 air-concentration data (Sec. 5.1.1) and the 1980 and 
1981 wet-deposition data (Sec. 5.1.2). Temporal variations in residual patterns are 
illustrated with frequency histograms of monthly SO4 and SO2 air concentrations and 
seasonal fluxes of wet SO4 deposition. Temporal variations and some spatial features of 
observations and predictions of these variables are then presented in scatter and time-
series plots. 

5.1.1 Monthly Average Air Concentrations 

The frequency histograms of SO4 air concentration residuals are shown for each 
of four months in Fig. 5.1. With the exception of October, the SO4 residuals are fairly 
close to being normally distributed, with 60% of differences between observations 
predictions within one standard deviation of the residuals (o^. The October distribution 
is skewed to the left, with only 30% of the residuals within one a^. The residuals in 
October show a strong negative bias (overprediction). The mean bias error in ASTRAP 
SO4 predictions ranged from ±0.4 yg/m^ in July to -2.8 yg/m^ in October. The SO4 
residuals with highest frequency occurred in the 1 to 2 ug/m^ range (24% of the time) in 
January, the -2 to -1 range (38% of the time) in April, the -1 to 2 range (40% of the time) 
in July, and the -4 to -3 range (30% of the time) in October. Figure 5.2 shows the 
frequency histograms of SO2 air concentration residuals over the same time period. The 
SO, distributions approach normality, with over 60% of the SO2 residuals within one Oj. 
for all four simulation months. The January and April simulations have a slight positive 
bias. The mean bias error in ASTRAP SO2 predictions ranged from +2.0 ug/m in 
October to 12.6 in January. The highest-frequency SO2 residuals occurred in the 10 to 
20 ug/m^ range (22%) in January, the 0 to 5 range (24%) in April, the 0 to 10 range (43%) 
in July, and the -10 to 0 range (48%) in October. 

Scatter plots of monthly SO| and SOj air concentrations are presented in 
Figs. 5.3 and 5.4. Perfect fit is indicated by the center dashed line, while predictions 
that are a factor of two under or over observations are indicated by the outer two 
dashed-dotted lines. The solid line represents the least-squared linear regression fit of 
the data. The slope, intercept, and correlation coefficient are shown on each plot. 
ASTRAP predictions for July S 0 | air concentrations show the smallest and the most 
symmetrical scatter around the perfect prediction line. The January scatter plot shows a 
tendency for model underprediction, while the April plot shows a slight tendency for 
model overprediction. The October data show a strong tendency for overpredicting SO4 
air concentration measurements. All four of the SO2 plots show a tendency for model 
underprediction. The strongest tendency appears in the January siniulation, while a 
slight tendency to underpredict appears in the July simulation. The SO4 bias tendencies 
are further supported by a positive MBE of 1.2 for January and 0.4 for July, and a 
negative MBE of 0.9 for April and 2.8 for October. Likewise, the positive MBE for SO2 
ranging from 2.0 (October) to 12.6 (January) supports the degree of positive bias observed 
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from the SO2 data plots. Over- or underpredictions of SO4 air concentrations greater or 
equal to a factor of two occurred at three locations (northeast New York, Memphis, 
Tennessee, and central Wisconsin) in January; one location (central Wisconsin) in July; 
and five locations (northeast New York, east New Hampshire, centred Massachusetts, 
Long Island, New York, and Delaware) in October. The relative residual error (O, -
Pj/O;) at these sites ranged from 66% (TN 36, III b.l) to -510% (NY 51, IX a.4) in 
January; 54% (WI 39) in July; and -215% (NY 51, IX a.4) in October. Over- or 
underpredictions of SO2 air concentrations greater than or equal to a factor of two 
occurred at three locations (central North Carolina, east and southeast New York, and 
southwest Indiana) in January, four locations (southeast New York, Toronto (Ontario), 
west Kentucky, and central Ohio) in April; three locations (central Massachusetts, 
southeast and west New York, and northwest Pennsylvania) in July; and two locations 
(central Wisconsin and southeast Ohio) in October. The relative residual error at these 
sites ranged from 68% (NY 15, IX b.l) to -503% (NC 46, VII b.7) in January; 53% (OH 28, 
VI b.3) to 70% (NY 15, IV b.4) in April; -139% (MA 1, IX a.8) to 67% (NY 14, PA 16, VI 
c.3) in July; and 53% (WI 39, II a.7) to 71% (PA 2, VI d.7) in October. The relative 
residual error at each ASTRAP grid cell, represented by at least one observation, is given 
in Tables M.l and M.2, App. M, along with the model predictions and observations. 

The characteristics of the site areas for which ASTRAP overpredicted S 0 | air 
concentrations are that they are either located on elevated/rough terrain (Whiteface 
Mountain, NY 51; Hanover, NH 37), in a valley area influenced by channel flow 
(Montague, MA 1; Connecticut River Valley), or near coastal areas (Indian River, DE 3; 
Huntington, NY 31). Since the same degree of overprediction does not occur at these 
sites for more than one month (except for Whiteface Mountain, two of three months with 
validation data), other factors besides complex terrain must be contributing to the poor 
model performance. The relative bias (positive or negative) with respect to other data 
points in the scatter plots seems to be consistent across months. In other words, the 
scatter pattern seems to proportionately shift in the same direction from month to 
month, at least for data points near the factor-of-two lines. This is not the case for the 
SO2 scatter plots, in which the scatter shift from month to month does not seem to be 
proportional. This difference may be due to the fact that ASTRAP-predicted S0| 
concentrations are more dependent than SO2 concentrations on changes to large-scale 
meteorological patterns. These large-scale changes tend to have a more uniform 
influence on the SO4 scatter patterns. On the other hand, the SOj scatter patterns are 
influenced more by local variations in meteorology and emissions, not adequately 
resolved in this data base. 

The time-series plots of monthly S 0 | and SOj air concentration mean 
observations and predictions over four months in 1978 is shown in Fig. 5.5. Although the 
bias is smaller over the first three months for S0 | , the variations in mean monthly SOj 
observations seem to be temporaUy tracked better than variations in mean monthly SO4 
observations. The model tends to systematically underpredict mean monthly SO, 
observations over all four months. This positive bias ranges from 28% in January to less 
than 10% in October. The bias error for SO4 is positive in January (16%) and July (4%) 
and negative in April (14%) and October (54%). Univariate measures are given in Fig. 5.5 
to complement the time-series plots and to aid in the evaluation of the temporal 
variation of bias and scatter error. With respect to bias, SO= simulations in July and SO2 
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simulations in January resulted in the smallest average error (0.5 and 3 ug/m , 
respectively), while SO4 simulations in the fall and SO2 simulations in January resulted in 
the largest average error (-2.9 and 12.6 vg/m , respectively). The degree to which 0 
approaches o is a rough indication of how well the model reproduces the observed 
variance (Wilmott 1984). The variances in observations and predictions are nearly equal 
in January and July for S 0 | and in January and April for SO2. The predicted variance is 
about one-half the observed variance for SO4 in October and for SO2 in July. 

A total of 16 SO| stations and 25 SO2 stations have valid observations for all 
four months. The time series of observations and predictions, computed over a unit-grid 
increment basis, for four representative SO4 and SO2 sites are shown in Figs. 5.6 and 5.7, 
respectively. Two of the SO4 and SO2 stations are Class I, SURE sites, and two are 
Class II, SURE sites. The SO2 site locations are the same as the SO4 site locations, with 
the exception that site 1 (Montague, Massachusetts) instead of site 3 is used for SO2. 
(Site 3 did not have four valid months for SO2.) Figures 5.6a and 5.7a show the 
time-series plots for model evaluation grid region Ila, represented by the Messer, 
Wisconsin site. This is the only site identified in the scatter plots at which the model 
underprediets SO4 observations by more than a factor of two (>50% underprediction) for 
January and July. Underpredictions of SO2 observations (Fig. 5.7a) are also evident at 
this site, but not to quite the same degree (32% in January and 47% in July). Comparison 
of time-histories of SO4 predictions and observations in the other ttiree grid regions 
(Figs. 5.6b, c, and d) showed the Lake Huron-Erie-Ontario region as having the smallest 
differences in January (14%) and April (-16%). The smallest differences in SO4 
observation-prediction error for July (-2%) and October (-42%) occurred in the southwest 
region at the Rockport SURE, Class I site (Fig. 5.6b). Similar comparisons of SO2 
predictions with observations (Fig. 5.7b, c, d) showed the Rockport site to have the 
smallest residual error over all four seasons, ranging from <1% (January) to 12% (April). 
The Lake Huron-Erie-Ontario region time-series plots (Fig. 5.7d) show the largest error 
of the four grid regions, with underpredictions ranging from 20% (October) to over 65% 
(July). This degree of underprediction is likely to result from nearby (within 100 km) 
large-source or multiple-source contributions to SO2 concentrations. 

5.1.2 Seasonal Fluxes in Wet Sulfate Deposition 

The frequency histograms of wet-deposition residuals are shown for each of the 
eight seasons of 1980 and 1981 in Figs. 5.8 and 5.9. The summer 1980 and 1981 residuals 
are the closest to being normally distributed, with 70% of the observation-prediction 
differences within one standard deviation (â .) of each other. The residuals for winter 
1980 showed the farthest departure from normality, with only 44% of the residuals with 
one Oj.. Negative bias (overpredictions by one or more ô ) was dominant (greater than 
50% of residuals) only in autumn 1980. The mean bias error ranged from -0.1 kg S04/ha 
(spring 1981) to -3.0 (autumn 1980). The combined season frequency histograms for 1980, 
1981, and 1980/1981 in Fig. 5.10 show the 1981 residuals to be closest to normality (76% 
within one â .) and the 1980 residuals to depart from normality (47% within one a ). The 
greater size of the 1981 data base (compared with the 1980 data base) pushed the 
combined 1980/1981 residual distribution closer to normality, with 65% of residuals 
within one ô ,. The mean bias error was the smallest, -0.8 kg/ha, for 1981, and the 
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largest, -2.01 kg/ha, for 1980. The mean bias errors and standard deviations for each 
season and the combined seasons are also given in the figures. The general shape of the 
observations and prediction distributions for combined like seasons and combined seasons 
for 1980, 1981, and 1980/1981 are shown in the frequency histograms in Figs. F.l through 
F.3, App. F. 

The scatter plots in Figs. 5.11 and 5.12 present a pairwise plotting of unit-grid 
increment average model predictions with observations for eight seasons, 1980 through 
1981. Perfect fit is indicated (as it was for the 1978 plots) by the center dashed line, 
while predictions that are a factor of two under or over the observations are indicated by 
the two outer dashed-dotted lines. The solid line represents the least-squared linear 
regression fit of the data. The slope, intercept, and correlation coefficient are given in 
each of the plots. ASTRAP predictions for summer 1980 and spring and summer 1981 
show the smallest and the most symmetrical (unbiased) scatter along the perfect 
prediction line. The other scatter plots show a tendency for model overprediction. This 
tendency is further supported by a negative mean bias error (MBE) greater than 2.0 for 
spring 1980 and for autumn 1980 and 1981 simulations. Although the negative MBE is 
small (<1.0) for the winters (because winter has lower deposition amounts than the other 
seasons), the scatter plots clearly show the systematic negative bias in the winter 
predictions. The comparisons in spring 1981 resulted in the smallest negative bias (MBE 
= -0.1), while comparisons in the summer 1981 resulted in an equally small positive bias 
(MBE = 0.2). Summer 1981 was the only season with positive bias. 

Overpredictions g^reater than a factor of two occurred at five grid regions in 
southwest Ohio, Pennsylvania, Virginia, and West Virginia in winter 1980; at five grid 
regions in the Adirondacks, Pennsylvania, and West Virginia in spring 1980; at two grid 
regions in Pennsylvania and Long Island in summer 1980; and at ten grid regions in 
western New York, Massachusetts, Pennsylvania, central Illinois, Virginia, and 
southeastern Ontario in autumn 1980. The relative residual error at these sites ranged 
from 100% (VA 2, Reg. VII c.4) to 256% (PA 3, Reg. VI d.7) for the winter; 129% (NY 3, 
Reg. VI C.6) to 175% (NY 6, VI c.9) for the spring; 103% (PA 2, Reg. VI d.5) to 166% (PA 
3, Reg. VI d.7) for the summer; and 101% (IN 2, Reg. II d.7) to 387% (NY 3, Reg. VI c.6) 
for the autumn. No factor-of-two underpredictions occurred in 1980. Factor-of-two 
overpredictions were less prevalent in 1981 than in 1980. This degree of mismatching 
observations occurred at five locations (southwestern Ohio, Massachusetts, Delaware, 
Whiteface Mountain, New York, and central Illinois) in the winter and at nine locations 
(eastern New York, Ohio, Delaware, eastern North Carolina, and north central Virginia) 
in the autumn. Factor-of-two underpredictions occurred at two locations in Canada 
(northern Nova Scotia and the Algoma region) in the winter and at one location 
(northwestern Wisconsin) in the summer. The relative residual error at these sites ranged 
from 64% underprediction (OH 42, Reg. V b.l) to 214% overprediction (NY 10, Reg. IX 
a.4) for the winter; 64% underprediction (WI 1, Reg. I b.5) for the summer; and 104% (OH 
4, VI b.2) to 262% (NC 7, VII c.9) overprediction for the autumn. All predictions for 
spring 1981 were within a factor of two of observations. 

The factor-of-two overprediction data points in Figs. 5.11 and 5.12 
predominantly represent precipitation chemistry samplers with event (MAP3S) or daily 
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(UAPSP) sampling protocols. This situation is true for all 5 data points for both winters, 
for the 2 data points for summer 1980, for 4 of the 5 spring 1980 data points, 7 of the 10 
autumn 1980 data points, and 5 of the 9 autumn 1981 data points. Thirteen separate 
event or daily samplers were involved. A possible bias between event/daily and 
weekly/monthly networks is suggested. This possibility is addressed further in Sec. 5.4.4, 
when the influence of sampling protocol on apparent model performance is evaluated. 
The relative residual error at each unit-grid increment, nine-grid increment, and twelve-
grid increment, represented by at least one observation, is given in Table M.3, App. M, 
along with the model predictions and observations. 

The time-series plots of mean wet SO4 deposition observations and predictions 
over eight seasons, 1980 and 1981, are given in Fig. 5.13. The seasonal variations in 
mean observation seem to be tracked fairly weU by ASTRAP. The model tends to 
overpredict mean seasonal observations in 1980 by between 12% (summer) and 54% 
(winter). The plot shows that the tendency to systematically overpredict is less 
significant in 1981. The model shows small overprediction (-1%) and underprediction 
(<4%) of mean observations in summer and spring 1981, moderate overprediction (23%) in 
the winter, and a 42% overprediction in the fall. Univariate measures are also given in 
Fig. 5.13 to complement the time-series plots and to aid the evaluation of the temporal 
variation of bias and scatter error. With respect to bias, simulations in spring and 
summer 1981 resulted in the smallest average error (-0.1 and 0.3 kg SO^/ha), while 
simulations in spring and autumn 1980 and autumn 1981 resulted in the largest average 
error (-3.1, -3.0, and -2.5 kg SO^/ha). Model simulations in summer, and in spring and 
autumn 1981 exhibit about 50% to 60% of the observed variance, while simulations in 
winter 1980 exhibit only 5% of the observed variance. The explained bias-corrected 
variance (EBCV) between seasons, decomposed into a spatial and temporal component, 
will be discussed in Sec. 5.3.2. 

A total of five stations have valid observations for all eight quarters. The time 
series plots over individual grids for four of these five sites are shown in Fig. 5.14. Two 
of the four subregions (X.d.6 and VI.a.8) are represented by grjd averages from more than 
one site in that subregion. All the stations have an event or daily sampling protocol, with 
the exception of the CANSAP Shelburne, Nova Scotia monitor, which has a monthly 
protocol. The Shelburne monitor is in the same subregion as the Kejimkujik APN daily 
sampler. The subregion seasonal mean is therefore the average of a daily and a monthly 
sampler. Each of the site-specific observed seasonal deposition amounts is plotted for 
comparison with the site average seasonal deposition amounts and the ASTRAP-predicted 
site average value in Fig. 5.14a. (Sites in the same grid cell are averaged.) The residual 
error or difference between observations and predictions ranges from less than 1% in fall 
1981 to a 35% overprediction in summer 1980. If the observations are corrected for 
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FIGURE 5.13 Time-Series Plots of Average Wet Sulfate Deposition 
Observations and Predictions 
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seasalt, the negative bias becomes slightly smaller.* Figure 5.14b shows the time-series 
plot for the Brookhaven site. This is one of the MAP3S sites identified in the scatter 
plots at which the model overpredicts observations by more than a factor of two. This 
degree of negative bias at this location is evident for summer and fall 1980. Also shown 
for comparison are the measured and modeled precipitation amounts, in centimeters. 
Figures 5.14c and 5.14d show the time-series plots for the Experimental Lakes Area 
(ELA) site in west Ontario and the Long Point site in south Ontario. These two have 
daily sampling protocols. The residual error in the ELA site ranged from -3% (autumn 
1980) to 29% (autumn 1981), while the residual error at Long Point ranged from about 1% 
(spring 1981) to -61% (fall 1980). 

5.2 SENSirrvrTY IN MODEL ERROR PATTERNS 

Sensitivity analysis can assume several forms, with a wide spectrum of 
sophistication possible. There are basically two types of sensitivity analyses: local and 
global. Local sensitivity analysis usually involves taking partial derivatives of specified 
output variables of interest (e.g., SOT air concentrations) with respect to a single input 
parameter (e.g., source strength) or internal model parameter variable (e.g., deposition 
velocity). These sensitivity coefficients (partial derivatives) provide direct information 
about the effect that variations (small or large) in each parameter around its nominal 
value have on the output or state variables. Global sensitivity analysis involves taking 
partial derivatives of state variables with respect to all parameters simultaneously. The 
sensitivity coefficients in this case are local gradients of each variable with respect to 
each parameter in the multidimensional parameter space. Sensitivity information for 
local sensitivity analysis is obtained by Taylor series expansion or through solution of a 
set of ordinary partial differential equations. Sensitivity information for global 
sensitivity analysis is obtained by the Fourier Amplitude Sensitivity Test, pattern search 
procedures, or Monte Carlo method. These methods are used to determine probability 
density functions. Further details on these methods can be found in Tilden and Seinfeld 
(1982) and Rabitz et al. (1983). The limited scope of our study did not permit the 
application of any of these methods for sensitivity analysis. In our sensitivity evaluation, 
we simply looked at the effects on model performance patterns that are associated with 
individual or grouped variations in preselected model parameters. 

In our sensitivity study, we focus on four internal model parameters. Parameters 
were selected on the basis of their commonality with the structure of other models, 
likelihood of eventual testing with field data, and general importance in influencing 
deposition and ambient concentration patterns. The parameters examined are dry-
deposition velocities (V^) for SO2 and SO4, linear transformation rate (T ) of SO, to SO4, 

*No seasalt or precipitation correction was made to the observations that were 
statistically compared. See App. G, Table G.l, for the identification of sites that the 
Unified Deposition Data Base Committee (UDDBC 1985a, b) recommended for a seasalt 
and/or precipitation correction. Table G.2 shows that these corrections to the data 
resulted in a maximum of only 3% improvement in overall model performance for 
winter simulations. 



73 

and bulk sulfur wet-removal coefficient (WC). The diurnal and seasonal variations in V^ 
and T and the WC are scaled by a factor of two (100% larger and 50% smaller).* The 
VjS for SOj and SO4 were adjusted concurrently to avoid unrealistic relative V̂ j rates 
between sulfur species. In this study, all comparisons of observations with predictions 
are aggregated on a grid whose size is approximately equivalent to the model's spatial 
resolution. Table 5.1 identifies the parameter adjustments for the 27 model variations 
tested. Model version 10 is the nominal or standard version of ASTRAP. The seasonal 
ranges in the diurnal patterns of the maximum, minimum, and average values of V̂ j and 
T for the nominal version of ASTRAP and the factor-of-two adjustments to those ranges 
are given in Table 5.2. The nominal WC in the model does not vary diurnally or 
seasonally, except it does have a lower value in northern latitudes in the winter. 

Both graphical display techniques and parametric statistical measures are used to 
evaluate the sensitivity in model performance. The differences in the patterns of 
displayed bias and scatter error and the relative sensitivity of model performance to 
variations in model parameters can be illustrated with fractional bias and scatter error 
(FBSE) plots and normalized bias and scatter error (NBSE) plots. These plots can also 
display relative (between model versions) estimates of goodness of fit between model 
predictions and observations. 

As discussed previously (Sec. 4.2.1), FBSE x)lots are used principally for 
evaluating local-scale, short-term model performance.' In FBSE plots, FABE in model 
predictions is plotted on the x axis, while FSE in those predictions is plotted on the 
y axis. In NBSE plots, normalized scatter (NS) in model predictions is plotted on the 
y axis and computed as the ratio of the standard deviation of residuals to the square root 
of the product of the standard deviation of the observations and predictions. Normalized 
bias (NB) in model predictions is plotted on the x axis and computed as the ratio of the 
mean bias error (MBE) and the square root of the product of the standard deviation of the 
observations and predictions. 

The sensitivity of model performance and the error patterns emerging from these 
plots are discussed in the next section for predicted air concentrations and wet-
deposition fluxes. The patterns that emerge (parameter clustering in groups of three) are 
then used with index of agreement (lOA), dimensionless MSE, rank score index (RSI), and 
systematic/unsystematic MSE to quantitatively describe and explain sensitivity patterns 
in model performance. 

•The factor-of-two parameter adjustments were originally selected for the Bayesian 
probability analysis of source receptor uncertainty. We feel that factor-of-two 
variations in V. and T^ represent a realistic estimate of the range of uncertainty of the 
nominal values of these parameters in ASTRAP. Section 2.4 of this report discusses 
these parameters further, including the seasonal and diurnal variations of the V^ and T^. 

*It should be noted that FE plots have previously been used to evaluate a model's ability 
to reproduce the upper end of the frequency distribution of observations (Cox et al. 
1985a, 1985b). 



TABLE 5.1 Internal Model Parameter Adjustments Used for Model Performance Sensitivity TesU 

Low Dry- Normal Dry- High Dry-
Depoflition Velocity DepoBJtion Velocity Deposition Velocity 

Vd-T.-WC Vj.T^.UC Vj.T^.WC Vj.T^.UC V^.T^.UC Vj,T,,HC Vj.T^.WC Vj.T,,UC Vj,T^,WC 

Transformation 
rate 

Low wet-
removal 
coefficient 

Normal wet-
removal 
coefficient 

High wet-
removal 
coefficient 

Low 

5 

L^L 

14 

L L 

23 

L L 
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L N 
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L N 
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High 
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N N 
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N 
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7 
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High 

9 
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L 

N 

H 

^Parameters: Vj = dry-deposition velocity 
T = transformation rate 
UC = wet-removal coefficient 

''Parameter Adjustments; H = High H = 2 N 

N = Nominal L = 0.5 N 

L = Low 
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TABLE 5.2 ASTRAP Dry-Deposition Velocity and 
Transformation Rate Variations, Normal and 
Adjusted (ranges result from seasonal variation) 

Range 

SOj dry 

Normal 
Low 
High 

SO2 dry 

Normal 
Low 
High 

Min. 

deposition 1 

0.05 
0.025 
0.10 

deposition 

0.10 
0.05 
0.20 

Transformation rate 

Normal 
Low 
High 

0.16-0.40 
0.08-0.20 
0.32-0.80 

Max. 

(cm/s) 

0.25-0.45 
0.125-0.225 
0.50-0.90 

(cm/s) 

0.65-0.90 
0.15-0.225 
0.60-0.90 

(%/hr) 

1.1-4.0 
0.55-2.0 
2.2-8.0 

Avg. 

0.12-0.23 
0.06-0.115 
0.24-0.46 

0.30-0.45 
0.15-0.225 
0.60-0.90 

0.4-1.6 
0.2-0.8 
0.8-3.2 

5.2.1 Seasonal (Monthly Average) Air Concentrations 
and Monthly Fluxes in Wet Sulfate Deposition 

The performance sensitivity patterns for ASTRAP simulations of July 1978 SOj 
air concentrations are shown in the NBSE plot of Fig. 5.15. The comparison of 
observations with all 27 versions of ASTRAP is represented. Each of the data points 
represents the approximate midpoint of the NB and NS of three parameter-set (PS) 
versions of ASTRAP (PS triple). Each triple is clustered in groups of three (triplets)*, 
resulting from the factor-of-two adjustments to V^. The triplet with the smallest NS and 
NB error is the low Vj triplet (Vj held at one-half of its reference pattern of variation 
while varying T and WC parameters) and is located in the lower center portion of the 
figure. The high V^ triplet (Vj held at twice the reference pattern of diurnal variation 
while adjusting the other parameters) has the largest NS and NB error and is located in 
the upper right of the figure. The normal V^ triplet has NS and NB error between that of 
the other two triplets. Each triplet is ordered from left to right by low, normal, and high 
TR. If NB error is positive, parameter sets within each triple are ordered from left to 

•A triplet is composed of model predictions from nine separate PS variations of 
ASTRAP, each of which is paired with the same set of observations. 
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right, by low, normal, and high WC. Negatively biased triples have a reverse ordering: 
high, normal, and low WC. The low V^ triplet exhibits the smallest error (of the three 
triplets plotted) for the July 1978 SOj simulations. The low 1^ triple within this triplet 
shows the best performance as measured by the smallest NB and NS error (which is 
proportionately equivalent to the smallest root mean same error). 

Figure H.12, App. H, shows the NBSE plots of SO2 simulations for all four 
seasons (each data point represents the normalized bias and scatter of a single PS version 
of ASTRAP). The data show a positive bias tendency in ASTRAP predictions. This 
tendency is less significant in October and most significant in January. When V̂ j and Ty 
are high, positive bias and scatter error are the greatest. The bias and scatter error are 
minimized with nominal to low V^ and T̂ ,, depending on the month being simulated. 

Ambient SO^ sensitivity patterns for ASTRAP parameter adjustments are given 
in Fig. 5.16. The data show the same clustering in triplets as in Fig. 5.15, but the 
clustering now results from the factor-of-two adjustments to T instead of VJ. Triplets 
are arranged from left to right by high, normal, and low Tj.. The triples within each 
triplet are ordered from left to right by low, normal, and high V ĵ. Parameter sets within 
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each triple have the same ordering by WC as shown in the sensitivity pattern for SOj air 
concentrations. The negatively biased triples, as is the case for the SOj patterns, have 
the reverse ordering of the positively biased triples. The normal Tj,_triplet exhibits the 
smallest error (of the three triplets plotted) for the July 1978 SO4 simulations. The 
normal V̂ j triple within this triplet shows the best performance, as measured by the 
smallest NB and NS error (smallest MSE). 

The NBSE plots of SO^" simulations for all four seasons (each data point 
represents the NB and NS of a single PS version of ASTRAP) are shown in Fig. H.13, 
App. H. The data show a negative-bias tendency in ASTRAP predictions for the spring 
and fall and a slight positive-bias tendency in the winter. Comparing NBSE patterns for 
SOTand SO, shows that ASTRAP simulations of SO| air concentrations are more 
sensitive to parameter variations than are ASTRAP simulations of SOj air 
concentrations. The SO| plots clearly show that the clustering of model PS is governed 
in a hierarchical order by the output variables' (e.g., air concentrations of sulfate) 
sensitivity to model parameter variations. For SO4, Tj. variation has the greatest 
influence, followed by V^ and WC. For SOj, Vj variation has the greatest influence (but 
to a lesser degree than Tj. has on SO| concentrations), followed by Tj, and WC. 
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Figure H.14, App. H, shows the SO, and SO| NBSE when all four seasons of data 
are grouped as one (unpaired in time and space). As expected, the clustering sensitivity 
patterns are identical to the patterns when model comparisons with observations are 
paired in time. However, there does seem to be more scatter in the SOj data. 

NBSE for the limited amount of wet SO| deposition data in 1978 is shown in 
Fig. H.15, App. H. The data show that model sensitivity clustering is now governed by 
WC (PS triplets) foUowed by V. (PS triples). Wet deposition is least sensitive to the T̂  
(T governs PS ordering within triples). Wet-deposition sensitivity patterns are discussed 
in'more detail in Sec. 5.2.2 for the more abundant 1980 and 1981 data. 

Fractional error plots provide a means to visually display the relative 
performance among various versions of ASTRAP model predictions. These plots show 
how well or poorly model estimates, on the average, reproduce measured 
concentrations. The additional information that can be obtained from the FE plots is in 
the degree of bias or scatter error contained in each of the PS model predictions. 
Ambient SO4 and SOj FEs for 1978 prediction-observation comparisons are illustrated in 
Fig. 5.17. The individual seasons are given in Figs. H.16 and H.17. The clustering by 
triples and triplets exhibited in the NBSE plots is retained in the FE plots. The same 
best-fit triples and individual parameter sets within these triples identified in the NBSE 
plots are also identified as producing the smallest relative error in these plots. The 
ASTRAP mean predictions of SO2 concentrations are within a factor of two of the mean 
observations for aU PS versions of the model when comparisons are unpaired in time and 
space. When observations and predictions are paired in time (Fig. H.16), the high V^ and 
T triples for the winter, spring, and summer simulations are the only parameter sets 
that are projecting SOj mean predictions greater than a factor of two of the mean 
observations. If aU the fall simulations are within a factor of two of the mean 
observations, the scatter in mean SOj predictions is within a factor of two of the scatter 
in mean SO, observations for all PS versions. In the summer and fall, about half the 
parameter sets overpredict the mean scatter in observations in the winter and spring. 
Because of the greater sensitivity of SO4 air concentrations to PS variations (e.g., T^, 
versions of ASTRAP overpredict mean observations of SO4 more than mean observations 
of SOj. This is illustrated by the spread of the data in Figs. 5.17 and H.17. Figure H.18, 
App. H, shows the FSE and FABE for the July 1978 wet SO| comparisons. 

The sensitivity in mean (over all receptors) ASTRAP simulations of air 
concentrations of monthly SO| and SOj to doubling and halving the internal model 
parameters individually, while holding the other model parameters to the nominal 
ASTRAP values, is given in Table 5.3. The mean predictions of the nominal or normal 
version of ASTRAP are also listed in the table for comparison. The numbers in 
parentheses are the absolute differences from the nominal ASTRAP predictions. As 
expected, SO^ air concentrations are most sensitive to variations in T^, followed by 
variations in V̂ j and WC. Sulfur dioxide air concentrations are most sensitive to 
variations in V ,̂ followed by T^ or WC. Because no one PS strongly dominates 
sensitivity, as WC does for wet deposition and Tj, does for ambient SO4, the triple and 
triplet overlap in the NBSE and FSE plots (see Figs. 5.15, 5.17, and H.18) was greatest for 
SOj. When all the parameters are doubled or halved simultaneously, these parameter 
adjustments show the greatest sensitivity (more than the individual variation of 
parameters) because SO2 concentration predictions are changed in the same direction. 
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TABLE 5.3 Sensitivity in Model Mean Sulfate and Sulfur Dioxide Air Concentrations (ng/ni ) to 
Variations in ASTRAP Internal Parameters 

Parameter 
Adjustments^ 

Nominal 
(10) 

2 X V^ 

del 
0.5 X Vj 
(13) 

2 X T 
(12) 

0.5 X T 
(11) 

2 X WC 
(19) 

0.5 X WC 
(1) 

2 X WC, Vj, T 
(27) 

0.5 X WC, Vj, T^ 
(5) 

Jan. 

6.5 

4.7 
(-28%) 

8.1 
20%) 

10.8 
(40%) 

4.1 
(-37%) 

5.5 
(-15%) 

7.5 
(15%) 

6.6 
(2%) 

5.9 
(-9%) 

SO^ 

Apr. 

7.3 

5.0 
(-32%) 

9.5 
(30%) 

11.5 
(58%) 

4.5 
(-38%) 

6.2 
(-15%) 

9.2 
(26%) 

6.8 
(-7%) 

7.5 
(3%) 

July 

10.9 

7.3 
(-33%) 

14.3 
(31%) 

16.7 
(53%) 

6.7 
(-39%) 

8.7 
(-20%) 

12.6 
(16%) 

9.1 
(-17%) 

10.7 
(-2%) 

Oct. 

8.1 

5.7 
(-30%) 

10.3 
(27%) 

13.1 
(62%) 

5.0 
(-38%) 

7.1 
(-12%) 

9.4 
(16%) 

8.2 
(1%) 

7.4 
(-9%) 

Jan. 

31.7 

24.3 
(-23%) 

38.3 
(21%) 

29.5 
(-7%) 

33.0 
(4%) 

28.5 
(-10%) 

34.2 
(8%) 

20.8 
(-34%) 

43.7 
(38%) 

SO, 

Apr. 

17.1 

13.6 
-(21%) 

20.3 
(19%) 

14.9 
(-13%) 

18.7 
(9%) 

15.4 
(-10%) 

19.3 
(13%) 

11.1 
(-35%) 

25.8 
(51%) 

1 

July 

17.3 

13.5 
(-22%) 

20.8 
(20%) 

14.3 
(-17%) 

19.5 
(13%) 

14.4 
(-17%) 

17.5 
(1%) 

9.8 
(-43%) 

24.8 
(43%) 

Oct. 

22.8 

17.7 
(-22%) 

27.2 
(5%) 

20.2 
(-11%) 

24.5 
(8%) 

21.3 
(-7%) 

24.6 
(8%) 

15.2 
(-33%) 

32.3 
(42%) 

^V. = dry-deposition ra te ; T = transformation ra te ; WC = wet-removal coefficient. 
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For SO^, on the other hand, the effect of simultaneously doubling or halving all 
parameters produces the smallest changes in SO| air concentrations. This is because 
increases (decreases) in V^ and WC decrease (increase) SO^ concentrations, while 
increases (decreases) in Tj, increase (decrease) SO^ concentrations. 

The sensitivity ranges of ASTRAP mean monthly predictions of SO4 and SO, air 
concentrations (wg/m ) in 1978 for the parameter adjustments considered are given in 
Table 5.4. The minimum SO4 predictions across the four seasons occur when T is low 
and V^ and WC are high. The minimum SOj predictions occur when all four* parameters 
are low, while the maximum SOj predictions occur when T^ is high or low and both V^ 
and WC are high. Since SO4 concentrations and SOj concentrations are affected by T in 
the opposite manner, the extremes produced in these variables require PS variations to 
be in opposite directions. The strong tendency toward negative bias (overpredictions) is 
exhibited by mean observations in the lower fifth of the range in mean predictions for 
SO4. Similarly, the strong tendency toward positive bias, in January and April, is 
exhibited by mean observations in the upper fifth of the range of mean predictions for 
SO2 simulations in January and April. This is consistent with our previous findings made 
with residual histograms, scatter plots, and time-series plots (Sec. 5.1.1). 

The relative dimensionless mean square error (RDMSE) or relative mean error, 
expressed as a percentage of the mean square observation (MSO), is a fairly good 
indicator of the percent overall bias and scatter error in model predictions. Table 5.5 
gives the calculated RDMSE for the nominal version of ASTRAP and the parameter 
adjusted versions producing the upper and lower prediction extremes just identified. The 
relative mean error for the nominal version ranged from 4% (July) to 3396 (October) for 
SO4 simulations and from 18% (October) to 25% (January) for SO2 simulations. The error 
in the highest PS predictor was greater than the error in the nominal version for all SOT 
and SO2 simulation cases. This error ranged from 49% (January) to 124% (April) greater 
than the error in the nominal version for SO2. The error in the lowest PS predictor 
(No. 6) for SO4 was less than the error in the nominal version for October simulations, 
while the error in the lowest PS predictor (No. 26) for SO2 .was less than or equal to the 
error in the nominal version for all four months. 

Table 5.5 also identifies the model PS providing the combined smallest and 
largest bias and scatter as measured by DMSE, lOA, MLE, and VLE, and it gives the 
RDMSE and the RSI for these best- and worst-performing model versions. These 
calculations show that the nominal version outperforms (or nearly outperforms) all other 
PS variations only for the April and July SO4 simulations. The model versions performing 
best in the January and October SOJ simulations outperformed the nominal version by 4% 
and 29%, respectively. The nominal version of ASTRAP did not perform best for any of 
the SO2 monthly simulations. The RDMSE for the best and worst PS performers ranged 
from 4% (PS 18 in July and PS 23 in October) to 209% (PS 6 in October) for SO | 
simulations and from 12% (PS 4 in January and April) to 78% (PS 27 in July) for SO2 
simulations. These ranges in error for the PS variations tested show that ASTRAP 
performance sensitivity is much greater for SO4 simulations than for SO2 simulations. 

*Vjj for SO2 and for SO4 are adjusted in the same direction simultaneously; thus, Vj 
variation can be considered a two-parameter variation. 
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TABLE 5.4 Sensitivity Ranges in ASTRAP for Four Seasons of Simulations (Mg/m ) 

Perform. 
Measure^ 

Pi 

Tr 

Vd 

WC 

PS 

• 0 

Jan. 

2.6-15.8 

L - H 

H - L 

H - L 

26 6 

7.7 

Apr. 

2.6-18. 

L - H 

H - L 

H - L 

26 6 

6.4 

sol 

July 

5 3.6-25.0 

L - H 

H - L 

H - L 

26 6 

11.1 

Oct. 

3.1-19.4 

L - H 

H - L 

H - L 

26 6 

5.3 

Jan. 

20.8-43.7 

H/L - L 

L - H 

L - H 

6/5 27 

43.4 

SO2 

Apr. 

11.1-25. 

H/L - L 

L - H 

L - H 

6/5 27 

22.8 

,8 

July 

9.8-24.8 

H/L - L 

L - H 

L - H 

6/5 27 

20.3 

Oct. 

15.2-32.3 

H/L - L 

L - H 

L - H 

7/6 27 

24.7 

^Pj = mean prediction over grid cell i 
T = transformation rate 
V. = dry-deposition rate 
WC = wet-removal coefficient 
PS = parameter set 
0 = mean observation over all grid cells. 



TABLE 5.5 Relative Mean Square Error (%) in Sulfate and Sulfur Dioxide Air Concentration Predictions 

Performance 

Lowest 

Nominal 

Highest 

Best overall 
performance 

RSI best 

Worst overall 
performance 

RSl'' worst 

PS^ 

26 

10 

6 

Jan. 

140 

12 

61 

8(18) 

1.839 

61(6) 

5.229 

Apr. 

86 

7 

131 

5(19) 

1.605 

131(6) 

11.078 

SO^ 

July 

144 

4 

72 

4(18) 

1.308 

144(26) 

5.127 

Oct. 

25 

33 

209 

4(23) 

1.354 

209(6) 

11.174 

PS 

5 

10 

27 

Jan. 

12 

25 

75 

12(4) 

1.828 

75(27) 

3.739 

SO2 

Apr. 

12 

24 

74 

12(4) 

1.803 

74(27) 

3.688 

July 

16 

19 

78 

15(13) 

1.761 

78(27) 

5.320 

Oct. 

18 

18 

47 

15(6) 

1.790 

47(27) 

2.889 
(6) (6) 

« 
5.219 5.388 
(26) (26) 

PS = parameter set. 

RSI = rank score index. 
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The highest predictor, PS 6 for SO4 , performed the worst for tliree of the four months. 
The lowest predictor, PS 26, performed the worst only for July S 0 | simulations. The 
highest predictor, PS 27, performed worst for all four SO2 simulation months. Best SO? 
performance came with high V̂ j and T^ and low WC (PS 18) in January and July, normal 
Vj and Ty and high WC (PS 19) in April, and low V^ and T^ and high WC (PS 23) in 
October. Best SO2 performance came with low Vj, and WC and normal T^ (PS 4) in 
January and April, low V̂ j and normal WC and T^ (PS 13) in July, and low Vj and WC and 
high TJ (PS 6) in October. 

The four performance measures of bias error and scatter error used to compute 
RSI for the nominal version of ASTRAP and the best- and worst-performance versions 
(Table 5.5) are given in Table 5.6. These measures identify ASTRAP's SO4 performance 
as being best for the summer and worst for the fall, and ASTRAP's SO2 performance as 
being best for the fall and summer and worst for the winter and spring. By decomposing 
mean square error into its systematic and unsystematic components,* we can compute 
the minimum systematic MSE achievable through the factor-of-two adjustments to model 
parameters. Table 5.6 gives the percent MSE in ASTRAP predictions that results from 
systematic and unsystematic causes. Also given are the computed MSE and its system
atic and unsystematic parts, the minimum percent of systematic MSE achievable with PS 
variation, the PS producing this minimum, the MSE components for this PS, and the 
systematic error reduction potential (SERP) achievable with the PS adjustments we 
used. The percent error that is systematic is small only for summer SOT. More than 70% 
of the apparent model error is systematic for winter SOT and SO2, spring SO™, and fall 
S 0 | predictions. The SERP is greatest (59%) for model predictions of fall SO4. Almost 
100% of the systematic error in summer SO4 can be removed by PS adjustment. The 
remainder of the error is primarily unsystematic, which may indicate that not much 
model performance improvement can be achieved for July, short of model reformation or 
improving the spatial and temporal restriction of the meteorology, emissions, and net-
deposition sampling data base. 

5.2.2 Seasonal Fluxes in Wet Sulfate Deposition 

The performance sensitivity patterns for ASTRAP simulations of summer 1980 
wet SO4 deposition are shown in the NBSE plot of Fig. 5.18. Comparisons of observations 

•Systematic error is the error in the empirically derived data internal to the model (e.g., 
model PS), the model input to the data (e.g., to generate emission, wind, and 
precipitation fields), and the model evaluation data observed (e.g., SOT and SO2 
concentrations and wet SO4 deposition). Systematic error is assumed to be reducible 
error. Refer to Table 1.1 in Sec. 1 of this report for our definition of reducible error. 
If the systematic error can be eliminated entirely, the remaining error (unsystematic 
error) can be interpreted as the potential accuracy of the model. Error reduction that 
would require model reformulation is considered in this report to be unsystematic 
error. Strictly spealcing, since our sensitivity study was restricted to variations only in 
internal model parameters, the only reducible error available for our consideration was 
the systematic error inherent to the four model parameter sets. 
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TABLE 5.6 ASTRAP Sulfate and Sulfur Dioxide Air Concentration Seasonal 
(monthly average) Performance and Systematic Error Reduction with Parameter 
Variation 

Performance 
Measure^ 

lOA 
VLE 

DMSE 
MLE 

RSI 

%MSE^ 

% MSE^ 

MSE 
MSE 
HSEg 

Minimum 
% MSE. 

Wint 

SO4 

0.60 
0.229 

0.132 
0.105 

2.13 

27.9 

72.1 

6.6 
1.9 
4.8 

48.4 

er 

SO2 

0.62 
0.232 

0.309 
0.254 

2.41 

14.3 

85.7 

427.5 
366.5 
61.0 

63.5 

Spring 

SO4 

0.55 
0.058 

0.690 
-0.U8 

2.65 

73.3 

26.7 

3.3 
2.4 
0.9 

5.1 

SO2 

0.61 
0.163 

0.294 
0.240 

2.35 

16.2 

83.8 

122.3 
19.8 
102.5 

62.0 

Summer 

SO^ 

0.83 
0.056 

0.044 
0.059 

1.36 

91.5 

8.4 

5.5 
5.0 
0.5 

0.2 

SO2 

0.75 
0.198 

0.254 
0.109 

1.90 

47.0 

53.0 

91.5 
43.0 
48.5 

33.9 

Fall 

SO4 

0.45 
0.076 

0.251 
-0.429 

2.97 

23.9 

76.1 

10.7 
2.5 
8.1 

J7.5 

SO2 

0.72 
0.158 

0.225 
0.019 

1.80 

39.1 

60.9 

131.1 
51.2 
79.9 

50.9 

18 19 25 

MSE 
MSE„ 
MSE3 

SBRP^ 

2.30 
1.55 
1.50 

24% 

270.7 
171.1 
99.0 

22% 

1.9 
1.8 
0.1 

22% 

87.5 
36.1 
51.5 

22% 

5.9 
5.9 . 
0.0 

8.2% 

85.8 
57.4 
29.4 

19% 

1.12 
1.02 
0.47 

59% 

134.2 
65.9 
68.3 

10% 

*IOA = index of agreement 
VLE = variance logarithmic error 
DMSE = dimensionless mean square error 
MLE = mean logarithmic error 
RSI = rank score index 
MSE = mean square error 
MSE = mean square error unsystematic 
MSE = mean square error systematic 
PS = parameter set 

Systematic error reduction potential is approximate. 
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with all 27 versions of ASTRAP are represented. Each of the data points represents the 
approximate midpoint of the NB and NS of three PS versions of ASTRAP (PS triple). As 
for SO4 and SO2, each triple is clustered in groups of three parameter sets (triplets)* 
resulting from the factor-of-two adjustments to WC. (Triplets are arranged from left to 
right by high, normal, and low WC.) The triples within each triplet are ordered from left 
to right by V^. Parameter sets within each triple are now ordered by the T^ in the same 
way that WC ordered individual parameter sets for ambient SO2 and SOJ. The distance 
of the data points from the origin in the NSBE plots is proportionately equivalent to the 
RMSE. The normal WC triplet exhibits the smallest error (of the three triplets plotted) 
for the summer simulations. The high-deposition-veloeity triple within this triplet shows 
the best overall performance, as measured by the smallest NB and NS error. This triple 
(PS: 17, 16, 18) also has the smallest RMSE (3.8 leg SO^/ha) of the nine PS triples 
evaluated. 

Figures H.19 and H.20, App. H, show the NBSE plots of wet S 0 | deposition 
simulations for each of the eight seasons in 1980 and 1981. The data show a negative 
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FIGURE 5.18 Wet-Deposition Sensitivity Clusters for Summer 1980 

*A triplet is composed of model predictions from nine separate PS variations of 
ASTRAP, each of which is paired with the same set of observations. 
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bias tendency in the winter and fall of both years and the spring of 1980. A much smaller 
degree of bias, particularly for the normal WC and V̂ j triple, is exhibited in the plots for 
both summers and for spring 1981. The NBSE patterns for wet deposition show that 
ASTRAP simulations of wet SO4 deposition are not as sensitive to parameter variations 
as ASTRAP simulations of SO4 air concentrations. However, the ordering or positioning 
of PS within each triplet for wet deposition is more sensitive to VJ than is the case for 
SO4 air concentrations. Figures H.21 and H.22 show the seasonal NBSE. The best-
performing PS triples from the figures* are 12, 10, and 11 (DMSE = 0.13) for summer; 16, 
18, and 17 (DMSE = 0.25) for winter; 17, 16, and 18 (DMSE = 0.14) for spring; and 3, 1, 
and 1 (DMSE = 0.11) for autumn. Figure H.23 shows the NBSE for 1980 and 1981, 
unpaired with four season groupings. PS triple 17, 16, 18 (DMSE) performs best for both 
1980 and 1981 data, with DMSE = 0.206 for 1980 and DMSE = 0.147 for 1981. In this 
case, if the minimum DMSE is used exclusively to rank performance, PS triple 6, 4, 5 
(DMSE = 0.183) would be ranked as performing best for 1980. If the index of agreement 
(lOA) is used, PS triple 17, 16, 18 would just barely outperform PS triple 6, 4, 5. Further 
examination of the NBSE plots shows that the scatter error is smallest for PS 17, 16, 18 
(which is ranked best by lOA) and the bias error is smallest for PS 6, 4, 5 (which is ranked 
best by DMSE). Therefore, DMSE tends to favor the smallest bias error while lOA tends 
to favor the smallest scatter error. 

Fraction error plots for the winters and summers of 1980 and 1981 are shown in 
Fig. 5.19. The same best-fit triples identified in the NBSE plots are also identified as 
producing the smallest relative error in these plots. Figures 5.19c and d (summers) show 
the ASTRAP mean predictions of wet deposition are within a factor of two of the mean 
observations for all PS versions of the model (observations and predictions paired in 
time). Spring 1981 (Fig. H.24) is the only other season in which the predictions from all 
PS versions of ASTRAP were within a factor of two of observations. The scatter in the 
predictions with the low WC triplet (nine PS) and the bias in the prediction with the high 
WC and low V^ triple (PS 22, 23, 24) are a factor of two greater than the winter 1980 
observations (Fig. 5.19a). Both the scatter and bias in the predictions with the high WC 
and low V̂ j triple (PS 22, 23, 24) are a factor of tvlo greater than winter 1981 
observations (Fig. 5.19b). The parameter sets for other seasons (autumn 1980 and 1981 
and spring 1980) with predictions not within a factor of two of observations are identified 
in Fig. H.24a, c, and d. 

The sensitivity of ASTRAP simulations of seasonal wet SO4 deposition to 
doubling and halving the internal model parameters individually, while holding the other 
model parameters at the nominal ASTRAP rates, is given in Table 5.7. The nominal 

*These triples are also identified as performing best for the above seasons when the 
DMSE is used exclusively as the performance measure. 

Because of the tendencies of DMSE and lOA toward the smallest bias or smallest 
scatter respectively, a combined measure was developed (RSI) using DMSE, lOA, MLE, 
and VLE. 
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TABLE 5.7 Sensitivity In Model Mean Wet Sulfate Deposition (kg/ha) to Variations in ASTRAP 

Internal Parameters 

Parame 

Adjusting 

Nominal 

(10) 

2 X WC 

(19) 

0.5 X WC 

(1) 

2 X V. 

(167 

0.5 X y . 
(13) " 

2 X T 

(12) 

0.5 X T 

(11) 

22 X WC, 

(27) 

0.5 X WC, 

(5) 

ter 

ents* 

Vd' Tr 

• V j , T^ 

W 

4.5 

6.8 

(+51%) 

2.8 

(-39%) 

3.9 

(-13%) 

5.2 

(+16%) 

4.6 

(+2%) 

4.A5 

(-1%) 

5.9 

(+31%) 

3.2 

(-29%) 

1980 

Sp 

10.4 

13.2 

(+27%) 

7.0 

(-33%) 

9.1 

(-13%) 

11.5 

(+11%) 

1».5 

(+1%) 

10.3 

(-1%) 

11.9 
(+14%) 

7.8 

(-25%) 

Su 

11.4 

14.4 

(+26%) 

7.5 

(-34%) 

10.1 

(-10%) 

12.6 

(+11%) 

11.5 

( + 1%) 

11.3 

(-1%) 

13.1 

(+15%) 

8.3 

(-27%) 

F 

8.6 

11.3 

(+31%) 

5.6 

(-35%) 

7.5 

(-13%) 

9.6 

(+12%) 

8.7 

( + 1%) 

8.55 

(-1%) 

10.1 

(+17%) 

5.3 

(-27%) 

W 

4.3 

6.7 

(+56%) 

2.6 

(-40%) 

3.7 

(-14%) 

4.7 

(+9%) 

4.35 

( + 1%) 

4.25 

(-1%) 

5.9 

(+37%) 

2.9 

(-33%) 

1981 

Sp 

7.1 

8.8 

(+24%) 

4.8 

(-32%) 

6.2 

(-13%) 

7.9 

(+11%) 

7.2 

( + 1%) 

7.0 

(-1%) 

7.9 

(+11%) 

5.4 

(-24%) 

Su 

9.2 

11.3 

(+23%) 

6.3 

(-32%) 

8.0 

(-13%) 

10.3 

(+12%) 

9.4 

(+2%) 

9.1 

(-1%) 

10.1 

(+10%) 

7.1 

(-23%) 

F 

8.4 

10.1 

(+20%) 

5.8 

(-31%) 

7.3 

(-13%) 

9.3 

(+11%) 

8.5 

( + 1%) 

8.3 

(-1%) 

9.0 

(+7%) 

6.5 

(-23%) 

wet-removal coef f ic ien t ; Vj = dry-deposition ve loc i ty ; T̂ . = transformation r a t e . 
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ASTRAP mean predictions are also given in the table for comparison. As expected, wet 
deposition is most sensitive to variations in WC. Doubling the coefficient increases mean 
winter deposition by more than 50% and deposition in other seasons by 20% to 30%. 
(Lower deposition amounts are the reason that the percentage change is larger in the 
winter than in other seasons.) Cutting the coefficient in half reduces mean winter 
deposition by about 40% and deposition in other seasons by 30% to 35%. The sensitivity 
to doubling the VJ reduces wet deposition by 11% to 14%, and cutting the coefficient in 
half increases wet deposition by 9% to 16%. The model simulations of wet deposition are 
nearly insensitive to variations in the T . Doubling or halving all four model parameters 
simultaneously affects wet deposition to a degree somewhere between that exhibited by 
doubling or halving the WC and VJ individually. The increases (decreases) to wet 
deposition incurred by this adjustment range from 11% to 20% (7% to 10%) less than 
doubling (halving) WC alone. 

The range in variation of ASTRAP mean predictions of wet SO^ deposition for 
the parameter adjustments considered is given in Table 5.8. The minimum mean 
predictions across the eight seasons of simulation occur when WC is one-half its nominal 
value, when the diurnal/seasonal variations in VJ are twice its nominal value, and when 
the diurnal/seasonal variations in T are at one-half or at its nominal value. The 
maximum predictions across the eight seasons occur when the WC and variations in T 
are twice the nominal value and when VJ is one-half the nominal value. Because of 
model insensitivity to variations in T ,̂ when simulating wet deposition (due to the 
application of the WC to both SOj and SOp, the low WC and high V̂ j triple, and the high 
WC and low VJ triple, can be identified as the parameter sets representing the lower and 
upper extremes in model predictions. The strong tendency toward negative bias 
(overprediction) in spring and fall 1980 and fall 1981 is exhibited with mean observations 
in the lower fifth of the range of mean predictions. This is consistent with our previous 
findings made with the residual histograms, scatter plots, and time-series plots 
(Sec. 5.1.2). 

The RDMSE or relative mean-error, expressed as a percentage of the ratio of the 
mean square observation and the square of the mean observation, is a fairly good 
indicator of the percent overall error in model predictions. Table 5.9 gives the 
calculated RDMSE for the nominal version of ASTRAP and the upper- and lower-extreme 
prediction versions just identified. The relative mean error for ASTRAP ranges from 9% 
(summer 1981) to 34% (fall 1980). The error in the highest PS predictor was greater than 
the error in the nominal ASTRAP in all cases. This error ranged from 12% (summer 
1981) to 155% (winter 1981), greater than the error in the nominal version of ASTRAP. 
The error in the lowest PS predictor was greater than the error in the nominal ASTRAP 
for only five of the eight simulated seasons. This error ranged from only 15% (winter 
1981) to 32% (summer 1981) greater than the error in the nominal version of ASTRAP. 
The error in the lowest PS predictor ranged from 10% to 20% in spring 1980 and fall 1981 
to as high as 50% in winter 1980. The more favorable performance of the low WC and 
high V^ PS triple compared with the performance of the high WC and low VJ PS triple 
further supports the negative-bias (overprediction) tendency of ASTRAP, especially in 
spring 1980 and fall 1980 and 1981. 



TABLE 5.8 Sensitivity Ranges in ASTRAP for Eight Seasons of Simulations (kg SO^/ha) 

Perform. 
Measure 

Pi 

WC 

Vd 

Tr 

PS 

0 

winter 

2.8-7.7 

L - H 

H - L 

L/N - H 

8/7 - 24 

3.8 

1980 

Spring 

5.9-14.3 

L - H 

H - L 

L/N - H 

8/7 - 24 

7.3 

Summer 

6.5-16.1 

L - H 

H - L 

L - H 

8 - 2 4 

10.3 

Fall 

4.8-12.4 

L - H 

H - L 

L/N - H 

8/7 - 24 

5.7 

Winter 

2.3-7.7 

L - H 

H - L 

L/N - H 

8/7 - 24 

3.6 

1981 

Spring 

4.1-9.8 

L - H 

H - L 

L - H 

8 - 2 4 

6.9 

Summer 

5.5-13.1 

L - H 

H - L 

L - H 

8 - 2 4 

9.9 

Fall 

5.0-11.5 

L - H 

H - L 

L/N - H 

8/7 - 24 

6.1 

^p. = mean prediction over grid cell i 
WC = «et-removal coefficient 
V, = dry-deposition velocity 
T = transformation rate 
PS = parameter set 
0 = mean observation over all grid cells 



TABLE 5.9 Relative Dimensionless Mean Square Error (%) and Rank Score Index in Wet Sulfate Deposition Predictions 

Performance 

Lowest 

Nominal 

Highest 

Best overall 
performance 

RSl'' best 

Worst overall 
performance 

RSI worst 

PS^ 

8 

10 

24 

Winter 

50 

22 

58 

21(18) 

2.804 

58(24) 

4.312 

1980 

Spring 

12 

22 

61 

8(3) 

1.510 

61(24) 

3.871 

Summer 

32 

13 

34 

12(18) 

1.502 

34(24) 

2.424 

Fall 

17 

34 

84 

14(3) 

1.752 

84(24) 

4.379 

Winter 

37 

22 

77 

19(17) 

1.946 

77(24) 

4.489 

1981 

Spring 

37 

10 

23 

10(11) 

1.469 

37(8) 

2.649 

Summer 

41 

9 

21 

9(10) 

1.442 

41(8) 

2.731 

Fall 

10 

20 

53 

7(1) 

1.390 

53(24) 

3.391 

PS = parameter set. 

RSI = rank score index. 



Table 5.9 also identifies the model PS providing the combined smallest bias and 
scatter as measured by DMSE and lOA, and MLE and VLE,* and the RSI for these model 
versions, and it gives the RDMSE. These calculations show that the nominal version of 
ASTRAP (or a slight modified version, with low TR) performed best for the summer and 
spring 1981 simulations. The model versions (high V^ and T̂ . and normal WC triple) 
performing best in summer 1980 and winter 1980 produced results that were not 
significantly better (only about 1%) than the nominal ASTRAP. The model versions that 
had performed best in spring 1980 and fall 1980 and 1981 outperformed the nominal 
ASTRAP by only 14%, 20%, and 13%, respectively. The RDMSE for the best and worst 
PS performers ranged from 7% (PS 1, fall 1981) to 21% (PS 18, winter 1980) for the best 
and from 34% (PS 24, summer 1980) to 84% (fall 1980) for the worst. The highest 
predictor, PS 24, performed the worst for six of the eight seasons. The low WC and 
normal V^ triple (1, 2, 3) and the normal WC and high V^ triple (16, 17, 18) performed 
best in spring and autumn of 1980, autumn of 1981, winter of 1980 and 1981, and summer 
of 1980. The normal WC and V̂ j triple (10, I I , 12) performed best in the two remaining 
seasons. The seasonal performance ranking of best, worst, and nominal PS by RDMSE 
will not match the same ranking by RSI, because RDMSE places a larger weight on the 
smallest bias error. Best and worst triples based on grouped statistics (combined seasons, 
paired and unpaired in time) are given in Table H.2, App. H. 

The four performance measures of bias error and scatter error used to compute 
RSI for ASTRAP and the best and worst performance versions (Table 5.9) are given in 
Table 5.10, along with RSI for the nominal version of ASTRAP. These measures clearly 
identify ASTRAP's performance as being best for the summer seasons and for spring 
1981. The measures also indicate worst performance in the winter and fall of 1980. 

It is now easy to see the relative rankings among the seasons for which ASTRAP 
performs well and the relative rankings among the seasons for which ASTRAP performs 
poorly. The combined index shows the closeness of performance within the three best 
seasons, the two worst seasons, and the three seasons (fall 1981, winter 1981, and spring 
1980) with intermediate ASTRAP performance. As indicated previously for air 
concentrations, additional measures are needed to determine the degree of potential 
improvement that can be achieved in model predictions by parameter adjustment. By 
decomposing mean square error into its systematic and unsystematic components, we can 
compute the minimum systematic MSE achievable through the factor-of-two adjustments 
to model parameters. (See footnote on page 84.) Table 5.10 gives the percent MSE in 
ASTRAP predictions that results from systematic and unsystematic causes. Also given 
are the computed MSE and its systematic and unsystematic parts, the minimum percent 
of systematic MSE achievable with PS variation, the PS producing this minimum, the 
MSE components for this PS, and the SERP achievable with the PS adjustments used. 
The largest systematic MSE occurs for model simulations of wet deposition where 

•As noted earlier, DMSE tends to be a bias measure and lOA tends to be a scatter 
measure. When ranking performance, because best performance is indicated by the 
largest lOA and the smallest DMSE, the inverse of lOA is added to the sum of DMSE, 
MLE, and VLE to get an overall ranking index, the rank score index (RSI). 
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TABLE 5.10 ASTRAP Seasonal Performance and Systematic Error Reduction Potential 
with Parameter Variation 

Performance 

Measure* 

lOA 

VLE 

DMSE 

MLE 

nsi 

ZMSE„ 

% HSB^ 

RMSE 
RMSE^ 

RMSEj 

Miaiaum 

Winter 

1980 

0.493 
0.262 

0.274 

-0.246 

2.82 

28.2 

71.8 

2.17 
1.16 
1.84 

71.7 

1981 

0.673 
0.242 

0.272 
-0.197 

2.20 

64.3 

35.7 

2.00 
1.61 
1.20 

33.2 

Spring 

1980 

0.629 
0.121 

0.242 

-0.351 

2.30 

47.3 

52.7 

4.28 

2.94 

3.11 

31.1 

1981 

0.822 
0.116 

0.114 

0.015 

2.47 

90.8 

9.2 

2.38 
2.27 
0.72 

7.1 

Summer 

1980 

0.850 

0.138 

0.161 

-0.055 

1.53 

90.7 

9.3 

4.32 
4.11 
1.32 

6.2 

1981 

0.849 
0.100 

0.110 
0.054 

1.44 

92.5 

7.5 

3.07 
2.96 
0.84 

2.4 

Fall 

1980 

0.565 

0.215 

0.398 

-0.405 

2.79 

50.2 

49.8 

4.39 
3.11 
3.10 

35.6 

1981 

0.700 

0.135 

0.230 

-0.315 

2.11 

47.3 

52.7 

3.38 
2.32 
2.45 

12.1 

% MSE„ 

PS 11 18 17 26 18 26 

RMSE 

RMSEjj 
RMSE, 

SERf'' 

2.16 
1.15 
1.83 

<1% 

1.76 
1.44 
1.01 

<3% 

3.20 
2.66 
1.79 

22% 

2.86 
2.75 
0.76 

<3* 

3.91 
3.78 
0.97 

3% 

3.69 
3.65 
0.57 

5% 

2.47 

1.98 

1.48 

14% 

1.54 

1.54 

0.57 

41% 

*IOA = index of agreement 
VLE = variance logarithmic error 
DMSE = dimensionless mean square error 
MLE = mean logarithmic error 
RSI = rank score index 
MSE = mean square error unsystematic 
MSE = mean square error systematic 
RMSE = root mean square error 
RMSE = root mean square error unsystematic 
RMSE = root mean square error systematic 
PS = parameter set 

''Systematic error reduction potential is approximate. 



ASTRAP performance is fair to poor. Almost 72% of the winter 1980 simulation error is 
systematic. Although this represents the largest percentage of systematic error of the 
eight seasonal wet-deposition simulations, the SERP is less than 1%. Because the wet 
chemistry monitoring network (Acid Deposition Monitoring system) was just really 
getting started in late 1979 and early 1980, systematic error in sample collection and 
analysis could be a significant cause for poor model performance over this period. The 
SERP is also small for the winter, spring, and summer of 1981. The difference in these 
simulations is that the apparent systematic error in nominal ASTRAP predictions and is 
less than 10% of the total apparent error. In these cases, the observational error may 
not, with the exception of the winter I98I, be as significant a contributor to the 
systematic error as it was in the winter 1980 simulations. The basis for this exception is 
the documented systematic undercatch error in precipitation sampling, which is a result 
of wind field deformation above the rain gauge orifice (more predominant with the 
elevation of the orifice above the ground), wetting losses on internal sampler walls, 
evaporation losses, snow blowing and drifting, and splash-out or splash-in. The 
systematic undercatch in precipitation has been estimated, from experimental data 
coUected in Europe and the USSR with the pit gauge as the reference, to vary from 3% 
to 30% annually and as much as 50% or more for individual episodes (Rodda et al. 1985 
and 1986, Sevruk 1982). The systematic undercatch, although more significant in the 
winter, may also contribute to a good portion of the systematic error in spring 1980 and 
fall 1980 and 1981. SERP ranged from 14% to 41% for these periods, which may be 
caused not only by the occasionally significant snowfall in Canada and northern states in 
these periods but also by the systematic undercatch of rain resulting from the same 
physics causing snow undercatch in nonpit rain gauges. The very small systematic error 
and SERP for spring 1981 and summer 1980 and 1981 may indicate that not much model 
performance improvement can be achieved over these periods except through model 
reformation or the preparation of a high-resolution (spatial and temporal) meteorology, 
emissions, and wet-deposition sampling data base. 

5.3 ERROR DECOMPOSITION AND SPATIAL ERROR PATTERN ANALYSIS 

The preceding discussion relied primarily on the use of distributional statistics to 
quantify and express apparent error in model predictions. Error was expressed in terms 
of residuals, scatter or variance, and mean squares, including the systematic and 
unsystematic portions of the mean square error (MSE). Although we now have a better 
picture of how ASTRAP performs, we are still missing some key elements needed to 
understand this performance. We need to be able to express the apparent error in terms 
of its bias, temporal, and spatial error components, and to graphically display and 
quantify the spatial error component. We propose to do this by the analysis of variance 
through the decomposition of MSE and through analysis of variance with regression 
analysis and decomposition of explained variance (in Sec. 5.3.1), and through display of 
spatial patterns that are optimized in an MSE sense (method described in Sec. 5.3.2). 

5.3.1 Separation and Computation of Bias, Temporal, and Spatial Error Components 

The MSE for a set of space-time observations and predictions can be decomposed 
into three parts through analysis of variance (ANOVA) (Ball 1986). This decomposition of 
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error could be important in understanding what and where the weak links in the model 
and the model input data may be. 

Suppose we have a series of predictions Pjj^ and observations Oj|^ at M locations 
(index i). At each location i (receptor grid, 130 x 130 km), there are K; observations in 
time (index k), for a total of N = ^ K. observation/prediction pairs. Equation 4.5 for 
MSE in Section 4.2.1 can now be written as: 

M K. 
MSE 

i= l k=l 
k .1 l\ (°ik- ^ k l ' (5.1) 

1=1 k=l 

The mean values over time at each location i are given by: 

<0i> = h 
1 

1 

K . 

T o i k 
k=i ^^ 

K. 

r k̂ 
k=i "̂̂  

(5.2) 

(5.3) 

The overall mean values (over time and space) are given by: 

M K. M 
«0» = h I r 0-, = i E K- "̂ O-̂ " (5-4) 

N . ' - , , ' ' , i k N . i- , 1 1 

M K . 

I r 
i= l k=l i=l 

^*P^^=I.I X ' i k 4 .1 "̂ i ^̂ î  (5.5) 

Equations 5.2 through 5.5 can be used to define, for ease of notation, the mean 
residual at location i over all time, and the overall mean residual or bias over the entire 
field of values as: 

<r^> = <0.> - <P.> (5.6) 

« r » = « 0 » - « P » (5.7) 



In terms of these definitions, we can rewrite Eq. 5.1 as the sum of three terms: 

MSE = ^ MSTE + ^ MSSE + « r » ^ (5.8) 

where MSTE is the mean square temporal error given by: 

MSTE = ^ I r [0.^^ - P.^ - <r.>] (5.9) 
1=1 k=l 

which can be related to the ANOVA notation as the sum of squares within groups, as 
SSg = (N - M) MSTE. 

MSSE is the mean-square spatial error given by: 

1 " 2 
MSSE = ^ ^ I K. [<r. - « r » ] ' ' (5.10) 

i=l 

which can be related to ANOVA notation as the sum of squares between groups, 
SSj, = (M - 1) MSSE. 

In order to make the comparison of error totals across seasons meaningful, it is 
necessary to normalize the MSE in Eq. 5.8 by the product of the interannual mean 
observation and prediction (the combined mean value of like seasons of different years). 
Equation 5.8 then becomes: 

DMSE = ^ ~ ^ MSTE + ^ Z t "SSE + ^ i ^ « r » ^ (5.8a) 
N-O-P N-O-P 0-P 

We now have a means to separate error into its temporal, spatial, and bias 
components. These components provide a means to represent the composition of error in 
model simulations for particular seasons. The temporal component is a measure of the 
ability of the model and model input data to account for interseasonal variations in 
meteorology and emissions. The significance of this measure may be highly dependent on 
the number of available data years and can be greatly influenced by meteorological 
variability from year to year. The spatial component is a measure of the ability of the 
model and data base to accurately represent the spatial patterns in deposition and air 
concentrations. These patterns are highly contingent on the model representation of 
wind and precipitation fields. The significance of this measure is dependent upon the 
spatial distribution and the number of receptor sites. Finally, the bias component is an 
expression of the residual error or the overall systematic bias over the entire field of 
values. 

Dividing each of the terms in Eq. 5.8a by DMSE provides a way to express the 
temporal, spatial, and bias error components as a percentage of the total error. These 
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components (TE, SE, and BE) are provided in Table 5.11, along with the bias, temporal, 
and spatial error ratios (BER, TER, SER), and the ratio of spatial to temporal error 
(STER). The first three ratios are error fractions of the interseasonal mean (for BER) 
and the interseasonal mean square observation. The STER values given provide some 
idea of the relative importance of spatial error to temporal error. An F-test of this ratio 
can be interpreted as a test of the hypothesis that the spatial differences are not random 
but are statistically significant. One can expect real or significant differences in the 
magnitude of bias errors among sites or regions when STER is larger than about 1.5. This 
suggests that the variations in error among regions for the winter, summer, and fall 
simulations are significant. These ratios can give a misleading picture, however, if the 
bias error component is a significant fraction of the total error (i.e., greater than 20%). 
The error ratios show that the spatial and temporal error ratios are 2 to 18 times larger 
than the BER. An examination of the contributions to total error shows that the spatial 
error dominates, accounting for over 70% of the total in the winter, spring, and 
summer. These statistics give the first indication of the apparent dominance of the 
spatial error component and suggest that the model is not doing well in representing 
spatial patterns (see the following discussion on explained variance and the discussion in 
Section 5.3.2). The autumn simulations show dominance of the spatial-error and bias-
error components, with a small temporal-error component. The relatively small 
temporal-error component across all seasons, particularly winter and autumn, may be the 
result of the statistically small number of seasons considered in the analysis. With only 
two years of data available for analysis, only two points contribute to the variance at 
each site. Because of the relatively large size of the total error in autumn, the autumn 
spatial error (DMSE^ = 0.148) is only slightly larger than the spatial error for the spring 
(DMSEg = 0.122) and summer (DMSE^ = 0.110). In addition to representing the largest 
percentage of the total error, the spatial error for the winter simulations (DMSE^ = 
0.216) is 60% to 95% larger than the spatial error for the other seasons. The absolute 
bias error for the autumn simulations is from 4 to more than 100 times larger than the 
bias error in the spring, summer, and winter simulations. 

We previously computed the explained variance of model predictions over 
individual periods or seasons (Section 5.1.2). Now we will report the explained variance 
in terms of a temporal and spatial component. To do this, it is useful to pick up aspects 
of ANOVA and combine them with a regression analysis (Ball 1987). The regression 
model definitions for the total sum of squares of the observations (SSTO), the sum of 
squares error (SSE), and the sum of squares regression (SSR) follow: 

SSTO = I (.0^^ - « 0 » ) ^ = (N - 1) 0 ^ (5.11) 
i , k ^ ° 

SSE = I (.0^^ - ?^^r = N • (MSE) (5.12) 
i , k 

SSR = I ( P . ^ - « 0 » ) = (N - 1) • a.^ (5.13) 
i , k P 



TABLE 5.11 Temporal, Bias, and Spatial Error In ASTRAP Predictions of 1980 and 1981 Wet Sulfate Deposition 

Bias Components^ Temporal Components'' S p a t i a l Components'^ 

0/pf MBE BE RMSTE TE RMSSE SE 

M"* N« (kg /ha ) DMSE8 (kg /ha ) BER (%) (kg /ha ) TER (%) (kg /ha ) SER (%) STER 

Winter 46 57 3 .62 / 0.273 - 0 . 7 6 0.21 13.3 1.29 1.28 7.4 2 .08 1.09 79.3 2.64 

4.38 

Spring 59 77 7 .12/ 0.174 - 1 . 1 8 0.17 13.5 2.62 2.82 17.0 3.13 1.05 70.3 1.29 

8.29 

Sun«,er 70 93 9 .69 / 0.136 - 0 . 3 4 0.04 1.0 2.88 0.74 11.6 3.87 0.58 80 .8 2.33 

10.03 

Autumn 73 101 5 .79 / 0.302 - 2 . 6 8 0.46 48 .4 1.73 0.70 2 .8 3.18 1.43 49 .1 6.93 ^ 

8.47 

Bias Components 

• Mean Bias Error (MBE) 
• Bias Error Ratio: BER = MBE/0 
• Bias Error: BE = (MBE)^/DMSE * 0 * P 

Temporal Components 

• Root- Mean Square Temporal Error (RMSTE) 

• Temporal Error Ratio: TER = MSTE/MSTO 

• Temporal Error: 
TE = (N - M)/N * MSTE/UMSE * 0 * P 

''Spatial Components 

• Root Mean Square Spatial Error (RMSSE) 

• Spatial Error Ratio: SER = MSSE/MSSO 
• Spatial Error: SE = (M - l)/N * M S S E / D M S E * 5 * P 

• Spatial-Temporal Error Ratio: STER = M S S E / M S T E 

''M = number of sites producing at least one observation/ 

prediction pair. 

^N - number of observation/prediction pairs. 

0/P = mean observation/mean prediction. 

^DMSE = dimensionless mean square error. 
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where: 

0. , = observational field, 
i k 

P. = regression of model predictions, and 

P., = a + b 0;i,, the linear least-squares regression model, 
i k 1" 

2 
We now can define the coefficient of determination (R ) as: 

2 _ SSTO - SSE ^ SSR _ P_ /g j^v 
' SSTO " SSTO ~ 2 

= 1 - ^IM- (5.15) 
- SSTO 

Using Eqs. 5.14, 5.12, and 5.13, R^ can be defined in terms of MSE: 

R2 = 1 - ( j j 4 - ^ ) ^ (5.16) 
0 

o 

The sigma ratio in Eq. 14 is valid for a regression model but not valid when Pjj^ is not a 
least-squares regression fit to 0;|^. In other words, it is no longer true that SSE + SSR = 
SSTO. This is because the observational data set, Oji^, does have measurement error. (It 
should also be noted that the overall mean of observations, <<0>>, is also the mean of 
the regression model, <<P>>, but this is not true when there is an overall bias.) Because 
of this error, to not penalize the model, a slightly modified definition of R seems 
appropriate. First, a new sum of square error is defined as follows: 

SSE' = I [0^^ - («0») - (.?^^ - «P»)r (5.17) 
i= l 

Removing bias from Eq. 5.12 yields: 

SSE' = N [MSE - (BIAS)^] (5.18) 

Using Eqs. 5.17 and 5.18, the bias term can be defined as: 

BIAS 5 « 0 » - « 0 » 
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Now the explained variance in model predictions can be defined in terms of the 
total variance in the observations minus the unexplained variance or error in observations 

'2 _ SSTO - SSE' _ . SSE' 
'̂  " SSTO ~ SSTO 

Using Eqs. 5.18 and 5.14, the explained bias-corrected variance (EBCV) can be expressed 
as: 

, ' 2 = i . ( _ ^ ) "SE - (BIAS)^ ^5_^9) 

a o 

By using the following definitions for mean square temporal observation (MSTO), mean 
square spatial observation (MSSO), and observed variance {a^ ) , and Eqs. 5.9 and 5.10, the 
explained variance can now be decomposed to a solely spatial, plus a solely temporal 
component (the bias component has been removed). 

H 

I 
i=l 

N 

I 
i = l 

[ 0 , 

N 

K. 
1 

- < 0 . > 
1 

- M 

[ < 0 . > -
1 

1̂  

« 0 » ] ^ 

MSTO = 

MSSO ^ . ^ 

(5.20) 

(5.21) 

„ 2 = IJL4 MSTO + S - ^ MSSO . (5.22) 
o N - I N - 1 

With some manipulation, it can be shown that the EBCV (R'^) can be expressed as the 
sum of a temporal component and a spatial component: 

,ecv = ( l ^ ) • ^ ^' * (1^) • ^ h' ''•''' 

where: 

R 2 ^ MSTO - MSTE^ ^.^^ t empora l e r ro r component of EBCV, and 
C MSTO 

R ^ = MSSO * ^^® Spatial e r ro r component of EBCV. 



102 

As these components approach 1.0 (as MSTE and MSSE approach zero), EBCV 
approaches 1.0, and the model can be said to explain all the variance in the observations. 

Now the EBCV and its temporal and spatial components can be computed for 
interseasonal comparisons of wet sulfate deposition observations and predictions in 1980 
and 1981. The results from these computations are summarized in Table 5.12. The table 
provides the EBCV and the size of its temporal (TVE) and spatial (SVE) components, all 
expressed as percentages of the total explained variance in observations. The temporal 
and spatial error components (R^ and Rg ) are also given, ranging from less than or 
equal to zero (mean square error is equal to or greater than the mean square observation) 
to 1.0 (mean square error equals zero). As the spatial or temporal error components get 
larger, the spatial or temporal error variances get smaller. The data variances show that 
the model's ability to explain variance in summer simulations (over 40%) is substantially 
better than its ability to explain variance in winter, spring, and autumn simulations. This 
difference in ability results from the model's improved ability to explain spatial variance 
in the summer simulations examined. More than 90% of the EBCV in the summer results 
from the ability to explain spatial patterns. The negative EBCV values indicate that the 
model does not do very well in explaining the observed interannual variance in 
nonsummer seasons. The computed SVE ranged from -43% for autumn simulations to 

TABLE 5.12 Explained Variance in ASTRAP Predictions 

Season 

Winter 

Spring 

Summer 

Autumn 

TVE^ 

(%) 

-2.0 

-14.9 

2.6 

-0.9 

\ ' 

-0.28 

-1.83 

0.26 

-0.09 

SVE*" 

(%) 

-8.4 

-4.1 

38.3 

-43.2 

«s^ 

-0.09 

-0.04 

0.43 

-0.48 

Total 

EBCV*^ (%) 

-10.4 

-19.0 

40.9 

-44.1 

a^vE = Temporal var iance expla ined , expressed as a 
percent of the t o t a l explained v a r i a n c e : 

TVE = i l ^ ] . « l f ° . R^2 . ^„„^ 
o 

0 

SVE = Spatial variance explained, expressed as a 
percent of the total explained variance: 

SVE = [ ^ ) . Mf° . R̂ 2 . ^̂ ^̂  
a 
0 

"̂ EBCV = Explained bias-corrected variance. 
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slightly over 38% for summer simulations. The model appears to not do well in 
explaining temporal variations, but this result must be viewed with caution because of 
the limited amount of data available (only two years) at the initiation of our study. 

5.3.2 Spatial Air Concentration and Deposition Error Patterns 

ASTRAP shows a limited ability to simulate spatial patterns of observed wet 
sulfate deposition. To see this more clearly, a technique to display spatial patterns in 
observations and predictions is needed. Several contour mapping techniques are available 
for this purpose, such as distance weighting, ordinary and generalized linear least 
squares, and polynominal least squares. Most classical techniques for computing surface 
contours to determine spatial trends are based on assumptions that the observed data can 
be represented by a polynominal or piecewise polynominal surface through a least-
squares fit of the data and that the deviations from a smooth surface are assumed to be 
random errors (Goodin et al. 1979, Ripley 1981, McLarin 1974). Distance weighting 
techniques are based on the assumptions that the physical and chemical processes that 
affect a specific site also affect points nearby and that the effect of the specific site on 
nearby points can be assumed to be a function of the distance of separation (e.g., inverse 
distance, inverse distance squared). Ordinary least-squares techniques approximate drift 
between data points with a linear or polynominal least-squares regression. These 
techniques suffer from a number of weaknesses such as subjectively determining the 
weight function, neglecting the possibility that the interpolation errors may have 
covariance, and not providing an estimate of interpolation errors. 

The contour mapping technique chosen should have several key attributes. At a 
minimum, it should preserve the main characteristics of the data by smoothing through 
inherent random data variability. The technique should retain the important spatial 
features of the data and should not be unduly influenced by values at single points. 
Ideally, the degree of variability in the data should influence the degree of smoothing, 
and the uncertainty in the interpolation estimates that are produced should be provided 
(Clark et al. 1987a). These desired attributes are for the most part inherent to a 
geostatistical interpolation technique known as kriging. Kriging is designed to minimize 
the overall variance between the true values and the estimated or interpolated values. 
The contours produced by kriging are, under certain conditions, designed to be optimal in 
a mean square sense. The weighting functions used in the interpolation are a function of 
the spatial distribution of data points and the inherent variability in the data. The 
approach is based upon the theory of regionalized variables, which is designed to 
mathematically describe geophysical properties distributed in space and/or t>me and 
provide an appropriate means for solving spatial estimation problems (Matheron 1971). 
The technique was used extensively in the 1960s and 1970s in geology (mmeral 
exploration), oceanography, meteorology (rainfall and geopotentials), hydrology (water 
table heights), radiochemistry (geographical distribution of radionuclides), and more 
recently in the analysis of spatial trends in acid-precipitation data (Finkelstem 1983, 
Bilonick 1985, Eynon and Switzer 1983). 
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Kriging is not a single method but a family of interpolation techniques. Two 
basic approaches, universal and simple, are most often applied. The simple or ordinary 
kriging method has been used almost exclusively to spatially extrapolate acid-
precipitation data. This method is dependent on the assumption that the underlying 
process is stationary (i.e., that the expected value of the process does not vary 
appreciably over distances between the data points and the interpolation points). The 
drift or trend between data and interpolation points is assumed to be constant. If the 
trend cannot be assumed constant (i.e., is nonstationary), a linear combination of 
predictors (e.g., polynominal terms) is introduced into the system of equations used to 
determine interpolation weights. This introduction of terms to account for a varying 
trend is known as the universal kriging method. Since the method relies on the 
preselection of the functional form of the trend and the error covariance, if the wrong 
form is chosen the bias in the interpolated variance may be worse than that obtained 
from simple kriging (Seilkop 1983). Oden (1986) has developed a graphical inspection and 
a spatial autocorrelation method to test the adequacy of the trend and/or error 
covariance functional form and to provide a means to alter the functions, if necessary, 
through parameter variation. This approach is sometimes referred to as generalized 
covariance kriging (Dennis and Seilkop 1986). A detailed description and the full 
mathematical treatment of the spatial autocorrelation fitting of the drift estimator used 
in the covariance kriging algorithm can be found in Oden (1986). The computational 
details of simple and universal kriging are provided in App. K. 

Both simple and generalized covariance kriging (Oden 1986) were investigated for 
evaluating spatial patterns of observed and predicted SO2/SO4 air concentrations, wet 
sulfate deposition, and the difference in those patterns. Due to difficulty in properly 
interpreting anomolies appearing in the generalized covariance kriging output, the results 
are reported in App. I without discussion. Our analysis is based upon the comparison of 
spatial patterns of simple kriging results. The level of spatial analysis used in this study 
is not as quantitative as the analysis used in the ISDME study (Clark et al. 1987a). A 
scaled down analysis was done for three reasons. First, because of the lack of grid point 
ASTRAP predictions, spatially kriged predictions (from observed evaluation sites to these 
grid points) could not be compared with the true ASTRAP grid point values. Without 
such a comparison, we could not fully determine how well the kriging routine reproduced 
the true model predicted spatial patterns. The counterpoint would be that if the 
predicted spatial patterns were determined on this basis, the kriged observed spatial 
patterns would not have the same advantage of a spatially uniform and dense set of 
interpolation data points. Second, the sophisticated statistical mathematical technique 
used to derive the kriged weighting functions can often overlook the fact that there is 
little physical justification for a model represented by Z(X) = zw-Z-(X), where w- is 
statistically derived spatial weighting functions* (Venkatram and Pleim 1985). A counter 
argument can be made, stating that the physical processes that govern wet-deposition 
spatial patterns (i.e., precipitation and wind fluctuation) are highly stochastic and that a 

•The spatial weighting function provides interpolation weights that depend on the 
covariance structure of the regionalized variable, Z(X). The function Zi(X) is a random 
function composed of a stochastic component and a deterministic or trend component. 



model that attempts to account for this is therefore justified. Finally, sufficient 
resources were not available to conduct an analysis at the level used in the ISDME 
study. Because ASTRAP was one of the models evaluated in this study, however, more 
quantitative results could be used to support our data interpolation and analysis. 

The ability of the model to reproduce the air concentration and deposition spatial 
patterns inherent in the observations is assessed in our study by comparing the positions, 
shapes, and magnitudes of the observed and predicted patterns. The differences in the 
position of the patterns are determined by comparing the relative locations of the 
observed and predicted high-deposition fields and the orientation of the major axis of 
each field. The differences in the shapes of the patterns is determined through careful 
inspection and comparison of the kriged contour maps. This approach was also used to 
compare the differences in the locations and magnitudes of observed and predicted 
maximum air concentrations and deposition. It should be emphasized that our use of all 
these comparative measures is qualitative but nevertheless useful when used with the 
more quantitative results presented in the previous section of this report (Sec. 5.3.1). 
Refer to the ISDME report (Clark et al. 1987a) for how these and other spatial measures 
can be quantitatively treated. 

Simple kriged contours of observed and predicted SOJ air concentrations are 
shown in Fig. 5.20 for January and July and in Fig. 5.21 for April and October. The 
contours of the predictions are generally smoother than those of observations, and the 
predictions tend to exhibit a single "hot spot" (maximum area). More detail is present in 
the observed contours, with a tendency toward multiple hot spots. The orientation of the 
major axis of the prediction contours is east-west for all months but July, when it is 
southwest-northeast. In contrast, the observed contours are shaped more irregularly, 
with distinctly different patterns for each month. Multiple observed hot spots occur in 
January and April, and multiple secondary hot spots occur in October. Major axis 
orientation is predominantly southwest-northeast. The January predicted maximum 
occurs in the mid-Atlantic states, while the observed January maximum occurs in 
Tennessee and Ohio. The predicted July maximum is reasonably close to but somewhat 
east of (approximately 300 to 350 km) the observed maximum. The two observed 
(Tennessee and Vermont) April maxima are represented by a single predicted maximum 
area, approximately 450 km northeast of the observed maxima in Tennessee and 450 km 
south of the observed maxima in Vermont. A rather broad area of predicted maximum 
October concentration is shown in Fig. 5.21(d) (southern Pennsylvania, New Jersey, 
northern West Virginia, Maryland), while a more localized area of maximum 
concentration is shown in Fig. 5.21(c) for observations (southwestern North Carolina and 
northwestern South Carolina). The ratios of the magnitude of the predicted to observed 
maximums are approximately 1.3 in April and October, 1.0 in July, and 0.7 in January. 

The comparison of kriged (simple) predictions and observations in Figs. 5.22 
through 5.25 provides a visual means of assessing how well ASTRAP reproduces observed 
spatial patterns of wet SO| deposition. The general spatial features of the observed 
patterns are more heterogeneously detailed than are the predicted patterns, showing 
multiple peak deposition areas in the summer 1981 and varied contour orientations and 
shapes. In contrast, the predicted patterns show less variation in characteristics from 
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FIGURE 5.20 Simple Kriging Contours of Observed and Predicted Sulfate Air Concentrations 
for January and July, 1978 



FIGURE 5.21 Simple Kriging Contours of Observed and Predicted Sulfate Air Concentrations 
for April and October, 1978 
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FIGURE 5.22 Simple Kriging Contours of Observed and Predicted Wet Sulfate Deposition 
for Winter and Summer, 1980 
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FIGURE 5.23 Simple Kriging Contours of Observed and Predicted Wet Sulfate Deposition 
for Winter and Summer, 1981 
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FIGURE 5.24 Simple Kriging Contours of Observed and Predicted Wet Sulfate Deposition 
for Spring and Autumn, 1980 
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FIGURE 5.25 Simple Kriging Contours of Observed and Predicted Wet Sulfate Deposition 
for Spring and Autumn, 1981 
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season to season. The irregular contours for 1980 winter predictions and observations 
probably result, in part, from the sparse spatial density of observation sites available 
(only 25 data points to represent eastern North America).* A comparison of patterns of 
high and low deposition shows that ASTRAP tends toward substantial overprediction in 
low observed deposition areas and substantial underprediction in high observed deposition 
areas for winter and autumn simulations. These tendencies are not indicated in the 
summer and spring simulations. 

The largest difference in the orientation of the major axis between observed and 
predicted patterns occurred with the 1980 winter comparisons. The predicted spatial 
pattern seems to be rotated a full 180 degrees from the observed spatial pattern. In 
addition, the range of distances of separation between observed and predicted peak 
deposition areas is greater for winter 1980 than for all other seasons analyzed. This is 
because a rather large area was defined by the kriged prediction, from which the peak 
predicted deposition could be located. The separation of predicted and observed maxima 
for the other seven seasons ranged from approximately 50 to 100 km for the summer to 
about 800 km for the autumn. The ratios of peak predicted to peak observed deposition 
exceed 1.0 for all seasons except winter 1980, with a ratio of 0.75. The spring 1980 ratio 
is the largest, exceeding 1.4. The geographic location of the observed winter and autumn 
peak deposition was in south central Ontario (east of Lake Superior), while the predicted 
winter (except 1980) and autumn peaks occurred in western or northwestern Pennsylvania 
and/or eastern Ohio and western New York. The summer and spring predicted peak 
deposition occurred primarily in south central or southwestern Pennsylvania or eastern 
Ohio and western Pennsylvania. The peak observations in the summer and spring seemed 
to be located slightly east or south of the peak predictions. The observed double peaks in 
summer 1981 are located 50 km south-southwest and 50 km north-northeast of the 
predicted peak summer 1981 location. Table 5.13 provides a summary of the major 
differences in observed and predicted spatial patterns. 

To determine if these differences in observed and predicted spatial patterns are 
statistically significant, quantitative results are needed. The ISDME analysis of the 
geographic area where ASTRAP simulations significantly over- or underpredict 
observation provides such results. Figure 5.26 shows the boundaries of the four 
subregions used in the ISDME study (Clark et al. 1987b). The size of the geographic area 
of significant differences between kriged predictions and observations was the primary 
measure used in the study to determine how well ASTRAP (and ten other models) 
reproduced the observed spatial patterns. When the interpolated predictions fell outside 
the uncertainty range of the observations, differences in the kriged observations and 
predictions were deemed significant (explained in next paragraph). The size of the 

*In addition, this spatial irregularity could also be the result of kriging predictions based 
on validation sites rather than much more uniform and densely distributed model grid 
point coordinates. The influence of this on kriged patterns can be seen in the more 
detailed (winter) and the smoother and more regularly shaped concentric ellipses 
produced for the 1980 seasonal ASTRAP predictions in the ISDME study (Clark et al. 
1987a). 
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TABLE 5-13 Comparison of Observed and Predicted Spatial Patterns of Wet Sulfate 
Deposition — Simple Kriging for 1980 and 1981 

PaCtern Shape; 
Relative Deposition 

GradLenc 
Orlencacton 

of Major Axis 

Winter 1980 

predicted 

Winter 1981 

Predicted 

Observed 

Sumner 19B0 

Predicted 

Observed 

I r r e g u l a r ; small 

I r r e g u l a r ; l oca l i zed 
l a rge 

E l l i p t i c a l ; small 

I r r e g u l a r ; moderate 

E l l i p t i c a l ; Large 

E l l i p t i c a l ; l a rge 

Northwest-
southeast 

Nor theas t -
southwest 

North-south 

East-west 

East-west 

Location and Magtiitude of Maxima 

Max; 
Local 

15" 
(8.5 ' ' ) 

Mag. <k:g 
SO^/ha) 

REG I I I ; 
VI.b and d; 
Vl l . a and b 
REG VI.c .4 .7 

REG VI .a , 
b and c 

REG VI .b .8 ; 
d.2 
REG IV.b .2 , 
3 ,5 .6 ,8 

Est . 
Separ. 
(taa) 

450-
950 

S.E. Ontario 

E. Ohio-
W. N.Y.-
U. Penn. 
Ontario-E. 
Lake Superior 

S.U. Penn. 

S.E. Ohio 

Suomer L981 

Predicted 

Observed 

E l l i p t i c a l ; moderate 

I r r e g u l a r ; moderate Seems to be 
nor theaa t -
souchuest 

REG V I . c . 6 , 9 ; 
b .9 ; d . 3 ; 
d.4.7 

S. Cen. 
Penn. 
S. Cen. N.Y.-
K. Cen. Penn.-
N.U. Va. 

Spring 1980 

Predicted 

Observed 

Spring 1981 

Predicted 

Observed 

Autumn L980 

Predicted 

Observed 

.Autumn L98L 

Predicted 

Observed 

E l l i p t i c a l ; moderate 

I r r e g u l a r ; moderate 
to small 

E l l i p t i c a l ; rnoderate 

I r r e g u l a r ; moderate 

E l l i p t i c a l ; moderate 

I r r e g u l a r ; moderate 

E l l i p t i c a l ; small 
to moderate 

I r r egu la r ; moderate 

Northeaac-
southwest 
Nor theas t -
southeast 

Northeaat-
southeast 
Nor theas t -
southeast 

Nor theas t -
southeast 
Nor theas t -
southeast 

Northeast-
southeast 

Nor theas t -
southeast 

1 5 ' 

1 5 ' 

{16.6 ' ) 

90° 

1 REG V I . b . 7 , 8 ; 
d . l , 2 , 4 

I REG VI.b .4 ,5 

* 
1 REG V I . b . 8 ; 

1 REG VI.d.3 

I REG V I . c . 3 , b ; 
d . l ,2 ,5 ,6 

1 REG V I I I . b . 7 , 8 ; 
tX.c.1.2 

i REG V I . d . l , 2 , 
4 , 5 ; b . 4 , 
5,7,8 

I REG V.b . l ,2 

17 

12 

14 

14 

14 

12 

7 

120-
240 

600-
1200 

720-
9 6 0 

E. Ohlo-
E. Penn. 
E. Ohto-
U. Penn. 

S.W. Penn. 

N.M. Va. 

W. 'J.Y.-
N.W. Penn. 
S.E. Ontar to-
3 . Quebec 

E. Ohio-
W. Penn. 

Ontarlo-E. 
Uke Superior 

re the ISOME (Clark • 
a l . 1987a) computed d i f ferences In ^ior axis o r i e n t a t i o n . 
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FIGURE 5.26 ISDME IModel Evaluation Region (Clark et al. 1987b) 

geographic area of significant differences was determined by totaling the percentage of 
half-degree grid cells, within each subregion, where significant differences occur. The 
results of the analysis showed that ASTRAP significantly overpredicts in all subregions 
and seasons except the northeast in the summer, northeast and southwest in the spring, 
and the northeast in the winter. The southeast subregion contained the greatest 
percentage of regional area for which ASTRAP significantly overpredicts, ranging from 
20% in the spring to 54% in the winter and autumn. The subregion with the smallest 
percentage of regional area with significant overpredictions was the northeast, with less 
than 29% of its area significantly overpredicted by ASTRAP. No significant over-
predictions occurred in this subregion in the spring and winter. 
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Figure 5.27 shows the geographic areas for each season in which ASTRAP 
significantly overpredicts or underprediets the observed deposition values. The plus and 
minus symbols indicate the areas where ASTRAP predictions exceeded the uncertainty 
envelope (determined by kriging) of observations by plus or minus two standard 
deviations. A 95% confidence interval can be assumed if the deviations of the kriged 
values from the true values are assumed to be normal. A cross-validation analysis using 
the Shapiro-Wilk test was used to verify this assumption (Clark et al. 1987a). The 
results indicate that it was not unreasonable to consider the results valid at the 95% 
confidence level. The data in the figure show that pockets of significant underprediction 
(in northeast Illinois, central Ohio and New Brunswick, and northwest Arkansas) occur 
only for the summer and the spring simulations. The extent of geographic overprediction 
shown indicates that ASTRAP does not represent the spatial variation in the magnitude 
of the observed spatial pattern very well in the winter and autumn. The model seems to 
do better in the summer, with the best results in the spring. The explained interseasonal 
variance reported previously (Sec. 5.3.1) indicated that the explained spatial variance of 
ASTRAP was best for summer simulations and worst for autumn simulations. The spring 
and winter results were poorer than the summer results, but not as poor as the autumn 
results. 

Figure I.l, App. 1, contains the simple kriged ASTRAP predictions (Clark et al. 
1987a) for each season in 1980. Although the general shape and orientation are very 
similar to our contours (Figs. 5.22b and d, and 5.24b and d), the spatial location of the 
magnitudes of predicted wet deposition did not correspond very well with our results. 
Several differences between the two studies could explain this discrepancy: (1) the 
ISDME-defined climatological season began on January 1, 1980; ours began on 
December 1, 1979, and (2) the more restrictive observational data screening criteria we 
used produced a different set of model verification data points. 

5.4 POTENTIAL FACTORS OF INFLUENCE ON APPARENT MODEL PERFORMANCE 

Several long-range transport and deposition model evaluation studies, some more 
comprehensive than others, have compared daily, montlUy, seasonal, or annual 
predictions of wet S or S 0 | deposition and/or SOj and SO^ air concentrations with 
corresponding observations. Some of the elements of these studies are listed in 
Table B.l, App. B. Although the studies applied similar model performance measures and 
found a number of similar results, considerable variation in the quality of model 
performance and some apparent inconsistencies in behavior were also exhibited. General 
problems included the amount and quality of input data and pollutant measurements, and 
problems with methods for preprocessing wind field and precipitation data to obtain 
consistent, physically reasonable results. Different methods for interpolating wind-field 
measurements yield substantially different wind fields, a phenomenon that is 
symptomatic of the poor determination of transport winds often cited as a basic 
limitation of models. Variations in performance among different models and between 
different versions of the same model in different studies could often be traced to 
different choices of parameter values representing physical processes, but performance 
was usually not tested for ranges of such parameters. As a general tendency, models 
reproduced SO4 better than SOj air concentrations and worked better with long-ter"' m 
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averages (monthly and annual) than with short-term averages (daily or hourly). Models 
were not expected to do as well in predicting wet deposition as they did in predicting SOT 
air quality, and in the study conducted by Ruff et al. (1985), this proved to be the case. 
However, in a study by Stewart et al. (1983) and in the MOIJ1982) study, correlations 
between predictions and observations were higher for wet SOT deposition than monthly 
SO4 air concentrations. In general, models corresponded relatively poorly with 
observations in the Ruff et al. study (1985) and MOI (1982) study and substantially better 
with observations in the Stewart et al. (1983) and EUiassen (1978) studies. A number of 
explanations have been offered for those variations in results (Ruff et al. 1984), including 
the fact that different averaging periods were used in the Ruff study, and different data 
preparation methods were employed. The evaluation of wet-deposition mass flux rather 
than ionic concentrations and the use of different procedures for adjusting precipitation 
quantities at monitoring sites have also been suggested as probable causes of the variable 
results. 

These studies, and more recently the NAPAP (1987a,b) Interim Assessment, 
suggest that some judgments on how well models perform can be made, but few determi
nations as to why they performed in that manner can be made. This section of our report 
looks at the "why" in model performance by examining four factors that may account for 
the noted variations in performance results. The influence of varying model internal 
parameterization was examined in Sec. 5.2 of this report. The factors that we will 
examine here are (1) different geographic regions, (2) different sampling protocols, 
(3) different levels of spatial aggregations of predicted and observed variables, and 
(4) the use of wet-deposition fluxes versus precipitation-weighted ionic concentrations. 
The selection of these factors is not intended to suggest that they are the only, or for 
that matter, the most important influencing factors. Their selection was based primarily 
on the fact that it is relatively easier to examine their influence than the influence of, 
for example, alternative model formulations (i.e., the treatment of wind and 
precipitation fields and the computation of pollutant trajectories). 

The influence of different geographic regions on apparent model performance is 
evaluated by segregating the model evaluation grid into ten geographical regions, 
identified in Fig. 3.1. Table 5.14 gives the results of model performance across the ten 
regions as measured by five performance indices. Since the spatial segregation method 
chosen severely reduced the number of observation/prediction pairs available per region, 
data from separate seasons were aggregated over individual years and over combined 
years. Because of the sparsity of valid data points for individual-year aggregation, some 
regions did not have a sufficient number of observation/prediction pairs to be included in 
the regional ranking. Regions with N equal to ten or less were not ranked for individual 
or combined years. Using the Rank Score Index to rank overall performance across 
regions, ASTRAP performs best in Regions VIII and V and worst in Region IX when all 
eight seasons are considered. Model performance is best for Regions VIII and V in 1981 
and Region VUI in 1980, and worst for Region VII in 1981 and for Region IX m 1980. 
Therefore, the model seems to perform best in north Ontario (Region V) and the Quebec 
and Atlantic province (Region VIII). 

The model's bias tendency seems to be that ASTRAP overpredicts in high-
deposition areas and underprediets in low-deposition areas, i.e., the model deposition 
gradient is larger than the observed gradient, particularly in the winter (see deposition 



TABLE 5.14 Comparison of Model Performance across Regions 

Region 

Index ot Agreement 

1980 

0.86 
(10) 
0.73 
(10) 
0.87 
( 8) 

( 0) 
0.70 
(IA) 
0.75 
(40) 
C.72 
(18) 
0.91 
(U) 
0.A8 
(IA) 
0.90 
( 8) 

1981 
(N) 

0.71 
(20) 
0.61 
(IA) 
0.59 
(IA) 
0.58 
( 3) 
J.32 

(13) 
0.77 
(50) 
0.66 
(19) 
0.86 
(13) 
0.70 
(37) 
0.62 
( 7) 

1980/81 
(N) 

0.76 
(30) 
0.67 
(2A) 
0.69 
(22) 
0.58 
( 3) 
0.75 
(32) 
0.75 
(90) 
0.68 
(37) 
0.91 
(2A) 
0.63 
(51) 
0.80 
(15) 

Variance LOR Error 

1980 
(N) 

1981 
(N) 

1980/81 
(N) 

0.055 
(10) 
0.153 
(10) 
0.061 
( 8) 

( 0) 
0.060 
(IA) 
0.268 
(AO) 
0.155 
(18) 
0.035 
(U) 
0.098 
(IA) 
0.061 
( 8) 

0.076 
(20) 
0.156 
(IA) 
0.179 
(14) 
0.025 
( 3) 
0.126 
(18) 
0.072 
(50) 
0.22A 
(19) 
O.IOA 
(13) 
0.105 
(37) 
0.092 
( 7) 

0.072 
(30) 
0.156 
(24) 
0.1A7 
(22) 

( 0) 
0.132 
(32) 
0.173 
(90) 
0.198 
(37) 
0.079 
(2A) 
0.108 
(51) 
0.085 
(15) 

Dimensionlefls Mean 
Square Error 

1980 
(N) 

1981 
(N) 

1980/81 
(N) 

0.165 
(10) 
0.166 
(10) 
0.051 
( 8) 
0.296 
( 3) 
0.200 
(IA) 
0.30A 
(40) 
0.162 
(18) 
0.092 

(11) 
0.34A 
(14) 
0.0A3 
( 8) 

0.AA9 
(20) 
0.196 
(IA) 
0.189 
(IA) 

( 0) 
0.099 
(18) 
0.105 
(50) 
0.179 
(19) 
0.112 
(13) 
0.196 
(37) 
0.095 

( 7) 

0.345 
(30) 
0.183 
(2A) 
0.136 
(22) 
0.296 
( 3) 
0.1A8 
(32) 
0.197 
(90) 
0.169 
(37) 
0.103 
(2A) 
0.2A0 
(51) 
0.069 
(15) 

Mean Log Error Rank Score Index 

1980 
(N) 

0.182 
(10) 

-0.3A5 
(10) 

-0.168 
( 8) 
0.A22 
( 3) 

-0.376 
(14) 

-O.A39 
(AO) 

-0.283 
(18) 
0.223 
(U) 
-0.5A7 
(IA) 
0.013 
( 8) 

1981 
(N) 

0.289 
(20) 

-0.272 
(14) 
0.055 
(14) 

( 0) 
' O.OU 

(18) 
-0.206 
(50) 

-0.A7A 
(19) 
0.057 
(13) 

-0.388 
(37) 
0.205 
( 7) 

1980/81 
(N) 

1980 
(N) 

0.25A 
(30) 

-0.302 
(2A) 

-0.022 
(22) 

( 0) 
-0.153 
(32) 

-0.309 
(90) 

-0.198 
(37) 
0.131 
(2A) 

-0.A31 
(51) 
0.103 
(15) 

1.57 
(10) 
2.03 
(10) 
l.AA 
( 8) 
2.A7 
( 3) 
2.06 
(IA) 
2.3A 
(AO) 
1.99 
(18) 
1.A5 
(11) 
3.07 
(IA) 
1.23 
( 8) 

1981 
(N) 

2.22 
(20) 
2.26 
(IA) 
2.12 
(IA) 

( 0) 
1.A6 
(18) 
1.68 
(50) 
2.39 
(19) 
l.AA 
(13) 
2.12 
(37) 
2.00 
( 7) 

1980/81 
(N) 

1.99 
(30) 
2.13 
(2A) 
1.75 
(22) 
2.A7 
( 3) 
1.77 
(32) 
2.01 
(90) 
2.04 
(37) 
1.41 
(2A) 
2.37 
(51) 
1.51 
(15) 

"Numbers in parentheses are the number of observation/prediction pairs (M). 
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contours in Sec. 5.3). This tendency is indicated by the sign and magnitude of the mean 
log error in Table 5.14. Underprediction is obvious in Region I (positive MLE) and slight 
in Regions Vlll and X, which tend to be the lower-deposition areas. Overprediction is 
clear in Regions 11, VI, VII, and IX, which tend to be higher-deposition areas. Because 
Regions VIII, IX, and X tend to span medium- and low- or medium- and high-deposition 
areas, one should avoid drawing any strong conclusions based on these regions. 

Some key factors that may influence the apparent model performance across 
regions include uncertainties in the spatiotemporal distribution of (1) precipitation 
amount and rate, (2) emission sources, and (3) transport meteorology. As mentioned 
earlier, most of these factors cannot easily be investigated. However, differences in 
sampling protocol (design, sampling period and frequency, chemical analysis, and data 
interpretation) may also play a role and can be readily investigated. Several years ago, 
Hakkarinen (1982) compared data from six North American precipitation chemistry 
networks with daily, weekly, biweekly, and monthly collection frequencies. He found 
that significant differences in precipitation chemistry measurements can be attributed to 
differences in sampling protocol. With this in mind, we segregated and grouped data 
from the seven monitoring networks used in our study into three groups: daily, weekly, 
and monthly. The model's performance in relationship to these tliree data groupings is 
summarized in Table 5.15. The data clearly show a degradation of apparent model 
performance as sampling frequency increases, with daily or event samplers showing 
significantly lower model performance levels than the monthly samplers. Performance 
evaluated with the NADP (weekly) samplers was closer to performance evaluated with 
monthly samplers than with event samplers. A similar pattern of performance evaluation 
dependence on sampling protocol exists when the same performance measures are 
computed for individual seasons (see Table J . l , App. J). If the differences in apparent 
model performance were a result of sampling error, this pattern of performance with 
sampling protocol would not be expected. In other words, samples that are left in the 
field for shorter time periods should be less susceptible to environmental contamination 
and evaporation. 

As noted previously in Sec. 5.1.2, model predictions at MAP3S sites (event 
samplers) accounted for the greatest number of cases of overprediction by a factor of 
two (or greater). The seasonal distribution of prediction-to-observation (P/O) ratios that 
are greater than 2.0 for daily, event, and combined weekly and monthly samplers is given 
in Table 5.16. Of the P/O ratios at MAP3S sites, 40% or more were greater than 2.0 for 
all seasons where the factor-of-two overpredictions existed. It was only during the 
spring and summer of 1981 that no model predictions exceeded observations by a factor 
of two. The total number of P/O ratios greater than 2.0 at the other daily samplers 
(none occurred at the APN or APIOS-D network sites) and at the weekly and monthly 
samplers is much less than the total occurring at the MAP3S sites. The frequency of 
factor-of-two overpredictions is more than 35% (53 valid samples) at MAP3S sites, with 
at least one overprediction per site at eight of the nine sites in the MAP3S network. The 
frequency at which this degree of overprediction occurred is much less (<2%) at the 
CANSAP and APIOS-C (monthly) sites and NADP (weekly) network sites. More than 75% 
of the factor-of-two overpredictions can be accounted for when ratios at both event and 
daily (UAPSP) sites are considered, and more than 94% can be accounted for when event, 
daily, and weekly (NADP) sites are considered. When the sampling protocol across regions 



TABLE 5.15 Protocol Sampling Period Influence on Model Performance 

Year 

1980 

1981 

1980/1981 

Sampling 
Protocol^ 

Monthly 
Weekly 
Daily 

Monthly 
Weekly 
Daily 

Monthly 
Weekly 
Daily 

N 

38 
37 
63 

5A 
86 
70 

92 
123 
133 

IDA 

0.84 
0.86 
0.74 

0.94 
0.83 
0.76 

0.90 
0.85 
0.75 

DMSE 

0.152 
0.195 
0.363 

0.080 
0.147 
0.221 

0.117 
0.165 
0.286 

VLE 

0.157 
0.157 
0.151 

0.090 
0.147 
0.171 

0.119 
0.152 
0.174 

Performance Measures 

MLE 

0.024 
-0.200 
-0.478 

0.090 
-0.114 
-0.260 

0.063 
-0.140 
-0.363 

RSI 

1.52 
1.72 
2.34 

1.32 
1.61 
1.97 

1.41 
1.63 
2.16 

MSE 

8.5 
15.6 
20.5 

3.0 
9.1 
13.0 

5.3 
11.1 
16.5 

% MSES 

23.0 
25.4 
68.7 

51.1 
43.7 
40.0 

22.8 
21.2 
58.8 

SERP (%) 

17.3 
22.9 
53.2 

29.6 
36.6 
28.7 

17.4 
17.5 
39.3 

PS 

20 
24 
23 

23 
23 
23 

20 
24 
23 

^Weekly = NADP; Monthly = APIOS-C, CANSAP; Daily/Event = UAPSP, APIOS-D, MAP3S, APN. 

''N = number of observation/prediction pairs 
lOA = index of agreement 
DMSE = dimensionless mean square error 
VLE = variance logarithmic error 
MLE = mean log error 
RSI = rank score index 
MSE = mean square error 
MSES = systematic mean square error 
SERP = systematic error reduction potential 
PS = parameter set 



TABLE 5.16 Seasonal Frequency of ASTRAP Factor-of-Two Overpredictions at Model 
Evaluation Sites as a Function of Sampling Protocol 

Sampling 
Protocol 

Event (MAP3S) 
Daily (UAPSP) 
Daily (APN) 
Daily (APIOS-D) 
Weekly/monthly 

Totals 

Win. 

3(4)3 
2(5) 
0(4) 
0(0) 
0(12) 

5 

Spr. 

2(5) 
2(6) 
0(4) 
0(0) 
1(12) 

5 

1980 

Sum. 

2(5) 
1(6) 
0(4) 
0(0) 
0(23) 

3 

Fall 

4(7) 
2(4) 
0(4) 
0(3) 
3(30) 

9 

Win. 

4(7) 
1(3) 
0(4) 
0(0) 
0(22) 

5 

1981 

Spr. 

0(7) 
0(6) 
0(4) 
0(0) 
0(42) 

0 

Sum. 

0(8) 
0(1) 
0(5) 
0(9) 
0(49) 

0 

Fall 

4(9) 
1(5) 
0(5) 
0(7) 
4(44) 

9 

^Numbers in parentheses are the t o t a l number of val id samples. 

is examined, regions with the poorest overall performance (e.g., RSI >2.1, see Table 5.14) 
have the greatest number of MAP3S event samplers.* This suggests that real regional 
variations in ASTRAP performance, especially in regions with extreme negative bias, 
may be compounded with apparent bias associated with different observation sampling 
protocols. 

Published studies that compared precipitation chemistry results derived from 
networks with different sampling protocols were reviewed. The first item to be checked 
was whether any changes had occurred in MAP3S network operation. The only significant 
change was in the type of collector. This change was made between November 1979 and 
April 1981. Before the change, the Battelle Pacific Northwest Laboratory (PNL) design, 
a polyethylene funnel and bottle precipitation collector^ had been employed (Dana and 
Easter 1987). The current network (after the change) uses the Health and Safety 
Laboratory (HASL) wet-dry, two-bucket collector. The Aerochem Metrics (ACM) 
collector, which is patented from the HASL design, is used at most major U.S. networks, 
including the NADP network. The PNL and HASL collectors were compared in two 
studies. The first study was conducted during eight months of MAP3S operations. 
Comparisons of samples taken from co-located PNL and HASL collectors were made at 
four MAP3S locations (MacCracken 1979). The second study was done at ANL, using 
samples taken during the summer of 1979 from co-located collectors (Sisterson et al. 
1979). The results from both studies showed that the reliability of the two collectors and 
comparability of the samples were about equal. When these results and the widespread 
use of ACM collectors (HASL-type samplers) in the NADP network were considered, the 

*The region with the worst overall ASTRAP performance (Region IX) has five of the 
seven factor-of-two overpredictions from three MAP3S event samplers. Performance in 
Region II was nearly as bad, with five of six factor-of-two overpredictions at the event 
samplers. 
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quality of the samples from different collectors did not seem to be the cause of the large 
extent of factor of two overprediction at MAP3S sites. 

We then looked at studies comparing the precipitation chemistries from samplers 
with different collection frequencies. Several studies that included comparisons of SOJ 
ion concentrations were found (Hakkarinen 1982, Chan et al. 1985, Sisterson and Tlsue 
1985, Topol and Lev-On 1986; and DePena et al. 1985). Three of these studies were 
examined in detail: the comparison of North American precipitation chemistry by 
Hakkarinen, the evaluation of sampling periods and types in Canadian networks by Chan, 
and a study of data collected over a two-year period by Sisterson, comparing co-located 
event and weekly samplers at ANL. 

Hakkarinen found that networks with longer sampling periods (weekly to monthly) 
tend to report higher concentrations of SO| ions than networks with shorter sampling 
periods (daily or event); however, no explanation was offered for these differences. Chan 
found that samples coUected at monthly intervals exhibited higher SO4 concentrations 
than samples collected daily. The higher SO4 readings in monthly samples (CANSAP 
network) were attributed to evaporative losses and contamination from dry deposition. 
Sisterson used data collected at ANL from April 1980 to March 1982. Chemical 
differences in the annual and seasonal mean concentrations of nine chemical species 
were compared. Results showed that the seasonal S 0 | ion concentrations derived from 
the weekly sampler data were significantly greater (statistically significant differences 
exceeded analytical uncertainty) than concentrations derived from the event sampler 
data in five of eight seasons, the exceptions being the summers of 1980 and 1981 and the 
spring of 1981. The computed concentration differences (weekly-event means) that were 
significant over the entire period showed that weekly SO4 ion concentrations exceeded 
event concentrations by 11.3% in the spring, 22.7% in the fall, and 21.3% in the winter. 
The reason given for these differences is chemical changes (dissolved SO2 oxidation to 
s o p that occurred in the weekly sample between the time it was coUected and 
laboratory analysis (Peden and Skowron 1978). 

Dissolved SO, [measured as S(IV)] deposited into an event coUector has less 
opportunity for conversion to S 0 | [S(VI)] because the event sample is in the collector for 
a shorter time and is refrigerated or frozen immediately after coUection and kept in this 
condition until analysis. This conversion can also be minimized by chemicaUy fixing 
aliquots of the sample with a solution of tetraehloromercurate (TCM) immediately after 
coUection (TCM forms sulfate-complex and aqueous-phase sulfur-IV valence-state SO3) 
and refrigerating or freezing the sample at or near the same time (Dana 1980). The 
event samples taken at the ANL site were refrigerated but not chemicaUy fixed. The 
weekly samples were neither refrigerated, frozen, nor chemicaUy fixed. These weekly 
samples were preserved by filtering only after arrival at the analytical laboratory, which 
was from several days to a week after collection. Since cold ambient temperatures in 
winter would preserve both the event and weekly samples in the field, one might expect 
to see less significant differences in winter. However, frozen samples were thawed to 
take an aliquot for pH and conductivity analysis. The event samples were then preserved 
by refrigeration before further laboratory analysis, while the weekly samples were not 
(Sisterson et al. 1985). (This procedure is essentiaUy the procedure foUowed in the 
MAP3S and NADP networks.) Therefore, the significantly higher S 0 | concentrations in 
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the weekly samples than the event_ samples in the winter were most likely the result of 
conversion of dissolved SO2 to SO^ after coUection. Cold-temperature preservation of 
the event samples in fall and spring 1980 produced similar results. The reason that no 
significant differences occurred in the summer and spring 1981 samples could be that 
oxidants (i.e., O3, H2O2) were plentiful and the ambient temperatures were warm enough 
for essentially all of the S(IV) initially in the precipitation to be converted to S(VI) by the 
time an event sample was collected.* Dana (1980) found that sulfite in summertime 
samples at four MAP3S sites was barely detectable. Less sulfite would remain available 
for gradual conversion in the weekly samples, thus leading to the noted insignificant 
differences in weekly and event sample SO^ concentrations in warm seasons. 

It appears, therefore, that a major contributing factor to the greater occurrence 
of significant ASTRAP overpredictions (P/O >2.0) with event or daily collectors than 
with weekly or monthly coUectors, particularly during the colder seasons, is the more 
complete oxidation of S(IV) to S(VI) for coUectors on longer sampling protocols. The cold 
temperatures and absence of oxidants in the winter, with a resulting observed S(1V) 
maximum in the winter (Dana 1980), would seem to explain the observed SO^ deposition 
minimum in samples that are preserved. The S(IV) would gradually be converted to S(V1) 
in samples that are not preserved. The wet-removal parameterization in ASTRAP is for 
bulk sulfur (i.e., removal rates for SO2 and S 0 | are identical). WhUe initial wet removal 
of SOi in the atmosphere is more efficient than removal of SO2 (the SO^ aerosol serves 
as cloud condensation nuclei), in-cloud oxidation of SO2 can be rapid, especially in the 
summer when oxidants are plentiful and total sulfur deposition is several times larger 
than observed in the winter. The wet sulfur deposition predicted by ASTRAP corresponds 
to the bulk sulfur equivalent of combined S(1V) and S(VI) and should, if S(IV) is not 
measured, more closely correspond to observations in which sample preservation of S(IV) 
is not ensured (NADP, APIOS-C, CANSAP, etc.). This, in fact, seems to be the case, as 
indicated with the results presented in Table 5.15. 

The third factor investigated that could potentiaUy influence model performance 
is a change in spatial scale for averaging paired observations and predictions. The scales 
selected for these pairings are individual site, unit-grid increments (30-40 km); nine-grid 
increments (300-390 km); and twelve-grid increments (1,200-1,560 km). Figure 3.1 shows 
the relative sizes of these grid scales. The spatial average deposition within each grid 
was computed as a simple arithmetic average. Table 5.17 summarizes the statistical 
measures used to examine changes in model performance over the four chosen levels of 
spatial aggregation. Grouped seasonal data were used for each year (1980 and 1981) and 
for the combined years. The comparisons show that model performance improves as the 

*Hales and Dana (1979) found that the solubility of SOj increases with increasing 
temperature, decreasing free acidity (increasing pH), and increasing gas-phase SO2 
concentrations. In addition, laboratory kinetic studies and atmospheric measurements 
have shown that H2O2 may be the key atmospheric oxidant of dissolved S(IV) species 
(SO2, SO3, HSOJ at solution pH <5.0 (Schwartz 1984, Lee et al. 1986). This is due to 
the high aqueous solubility of H2O2 and its increase in reaction rate with S(1V) as 
acidity increases (Kleindiest et al. 1988). 



TABLE 5.17 Comparison of Model Performance Based on Spatial Aggregation 

Year 

1980 

1981 

1980/ 
1981 

Level of 
Aggregation 

pjb 

Unit 
9 
36 

PI 
Unit 
9 
36 

PI 
Unit 
9 
36 

N 

139 
133 
77 
34 

230 
195 
102 
38 

369 
328 
179 
72 

lOA 

0.803 
0.795 
0.821 
0.860 

0.836 
0.837 
0.844 
0.896 

0.820 
0.815 
0.830 
0.877 

DMSE 

0.253 
0.262 
0.209 
0.144 

0.158 
0.158 
0.152 
0.087 

0.197 
0.205 
0.181 
0.118 

Performance 

VLE 

0.199 
0.203 
0.150 
0.089 

0.155 
0.163 
0.153 
0.114 

0.177 
0.186 
0.158 
0.109 

MLE 

-0.263 
-0.269 
-0.222 
-0.203 

-0.108 
-0.105 
-0.066 
-0.034 

-0.166 
-0.171 
-0.133 
-0.114 

Measures^ 

RSI 

1.96 
1.99 
1.80 
1.60 

1.62 
1.62 
1.56 
1.35 

1.76 
1.79 
1.68 
1.48 

MSE 

15.7 
16.2 
11.3 
6.8 

8.7 
8.2 
6.2 
3.2 

11.4 
11.4 
8.4 
4.9 

% MSES 

29.4 
29.6 
26.4 
32.0 

17.1 
15.4 
7.9 
5.2 

20.3 
20.0 
14.6 
15.3 

SERP (%) 

13.4 
13.4 
15.9 
25.8 

0.3 
0.5 
0.3 
0.5 

4.7 
7.1 
8.4 
12.5 

PS 

18 
18 
18 
18 

*N = number of observation-prediction pairs 
lOA = index of agreement 
DMSE = dimensionless mean square error 
VLE = variance logarithmic error 
MLE = mean log error 
RSI = rank score index 
MSE = mean square error 
MSES = systematic mean square error 
SERP = systematic mean square error 
PS = parameter set 

PI = paired individually 
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spatial aggregation scale gets larger. This may be because as the aggregation scale 
increases, the influence of extreme values (with the larger number of data points 
available) is likely to be reduced. There is essentially no difference in model 
performance between the pairing of observations and predictions on an individual-site or 
a single-grid basis, since few grid cells have more than a single sampling site. The 
degree of improvement in model performance in aggregation over larger scales is greater 
for the 1980 data than the 1981 data. 

The last factor of influence in model performance that was investigated is the 
use of PWICs. The seasonal SO^ concentrations reported in the Acid Deposition System 
(ADS) data base included SOJ computed as a PWIC (in mg/L) and deposition computed 
from PWIC as a wet sulfur mass surface flux (g/m ). A description of the computations 
in ADS for deriving PWIC and deposition is given in App. K. Table 5.18 summarizes the 
statistical measures used to compare model performance when observations and 
predictions are paired as SO^ PWIC versus mass deposition flux. Eight seasons of data 
are reported. The data show that model performance for four simulated seasons (winter, 
spring, and summer 1980, and autumn 1981) declined when observations and predictions 
were compared on a PWIC basis. The opposite was true for the winter 1981 simulations 
(RSI goes from 2.20 to 1.99). The simulations for the other seasons did not show any 
significant change in performance with PWIC versus mass flux. Significant declines in 
the explained spatial variance and total EBCV occurred for all seasons when data were 
compared on a PWIC basis versus a mass flux basis (the changes are given in Table 
5.17). These results are somewhat surprising, since one might assume that precipitation 
weighting would smooth out some of the spatial error inherent in coUecting and spatially 
interpolating precipitation data. The decline in the model's ability to explain variance 
with use of PWIC may be due to the fact that ASTRAP calculations utilize grided 
precipitation fields rather than values measured at the wet-deposition observation sites. 
Venkatram et al. (1986) and others have found that when receptor-specific precipitation 
data were substituted into the diagnosed precipitation field, the agreement between 
observed and predicted SO^ PWIC improved substantially. Although these results were 
obtained with an episodic model, similar results were o'btained by Clark et al. (1987a) 
with a Lagrangian model for seasonal predictions. 
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TABLE 5.18 Comparison of Model Performance Based on Precipitation-Weighted Ionic 

Concentration Versus Mass Flux 

Season 

Winter 80 

Winter 81 

Winters 

Spring 80 

Spring 81 

Springs 

Summers 

Autumn 80 

Autumns 

Form 

pwic'' 
Mass Flux 
PWIC 
Mass Flux 
PWIC 
Mass Flux 

PWIC 
Mass Flux 
PWIC 
Mass Flux 

PWIC 
Mass Flux 

PWIC 
Mass Flux 
PWIC 
Mass Flux 

PWIC 
Mass Flux 

PWIC 
Mass Flux 
PWIC 
Mass Flux 

PWIC 
Mass Flux 

IDA 

0.41 
0.49 
0.72 
0.67 

0.55 
0.53 
0.77 
0.32 

0.76 
0.85 
0.85 
0.85 

0.56 
0.57 
0.51 
0.70 

DMSE 

0.30 
0.27 
0.23 
0.27 

0.28 
0.24 
0.13 
0.11 

0.24 
0.15 
0.10 
0.11 

0.44 
0.40 
0.39 
0.23 

Performance 

VLE 

0.221 
0.262 
0.137 
0.242 

0.121 
0.121 
0.131 
0.116 

0.136 
0.138 
0.084 
0.100 

0.211 
0.215 
0.132 
0.135 

MLE 

-0.197 
-0.245 
-0.232 
-0.199 

-0.294 
-0.351 
-0.039 
0.015 

-0.030 

-0.055 
0.120 
0.054 

-0.325 

-0.410 
-0.359 
-0.315 

Measures^ 

RSI 

3.16 
2.82 

1.99 
2.20 

2.51 
2.29 

1.60 
1.46 

1.72 

1.52 
1.48 
1.43 

2.76 

2.78 
2.84 
2.11 

TVE 
(Z) 

38.1 
39.7 

33.3 
32.8 

29.5 
34.4 

24.5 
36.5 

SVE 
(Z) 

-10.8 
12.3 

-5.4 
16.5 

25.7 
41.2 

-49.9 
4.0 

R'2 
(X) 

27.3 
52.0 

27.9 
49.5 

55.2 
75.6 

0 
40.5 

^lOA = index of agreement; DMSE = dimensionless mean square error; 
VLE = variance logarithmic error; MLE = mean logarithmic error; 
RSI = rank score index; TVE = temporal variance explained; 
SVE = spatial variance explained; R"'' = residual correlation coefficient 

''PWIC = precipitation-weighted ionic concentration 
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6 CONCLUSIONS AND RECOMMENDATIONS 

After previous model evaluation studies (App. B) were completed, several 
questions remained about the reliability and performance of Lagrangian meso- and 
synoptic-scale transmission* and deposition (LMSTD) models.* The nature of these 
technical issues, in turn, raised important questions about the ability and ultimate utility 
of these models for formulating policies on controlling acid deposition. Some of the key 
model performance issues raised are summarized here: 

• Can temporal patterns in SO^ and SO2 air concentrations and in wet 
SO4 deposition be reasonably reproduced? 

• How weU can the magnitudes of maximum seasonal SO^ depositions 
and SOT and SO2 air concentrations (DAC) be reproduced? 

• Are there significant differences in interannual seasonal (e.g., 
between summers of different years) and interseasonal (e.g., 
between winter and summer of the same year) performance of 
LMSTD models? 

• How sensitive is model performance to linear adjustments in the 
empirical parameterization of LMSTD models? 

• Are there significant interannual variations in the magnitudes of 
predicted and observed wet deposition because of variability in 
meteorology? Does this variability severely restrict our ability to 
forecast reliable deposition patterns? 

• How weU can we reproduce the spatial patterns in DAC 
observations; i.e., can the spatial patterns, such as DAC contour 
orientation, shape, and gradient magnitude, be reasonably 
reproduced? 

• How well do LMSTD models perform in different geographical 
regions, and can the basis for observed significant differences in 
performance be reasonably identified? 

• Can we decompose error components into spatial, temporal, and 
bias parts or into systematic or unsystematic parts to gain a greater 
insight into model performance? 

*Transmission = transport and diffusion, chemical transformation, and wet and dry 
removal (precipitation scavenging, dry-deposition physics, etc.). 

tFor use in predicting long-term (one month or longer) air-pollutant concentration 
averages and pollutant-deposition flux accumulation. 



128 

The success of providing a reasonable reply to these issues is contingent upon 
(1) the spatial resolution of the available model evaluation data base, (2) our knowledge 
of the magnitude of error in this data base, and (3) the development of a model 
evaluation methodology capable of bringing out the salient features of spatiotemporal 
and bias error patterns. Although we feel the observational data base (DAC) used in our 
study is adequate to evaluate the LMSTD model, we lack the data necessary to quantify 
the error in this data base. The same lack of data on meteorology and emissions data 
(the input to the model) exists. This lack of knowledge may preclude us from providing 
complete and definitive responses to the above-referenced issues and to our study 
objectives. (Quantification of error in the data base is an issue addressed in our 
recommendations.) 

The model evaluation methodology was selected to provide a group of 
performance measures that could coUectively meet our model evaluation objectives and 
address the aforementioned model performance issues. Because no single or narrow 
group of measures can be expected to provide a comprehensive response or a response in 
which reasonable confidence can be placed, we borrowed, developed, evaluated, tested, 
and adapted a broad group of statistical tools to meet our needs. These included 
statistical spatiotemporal pattern display methods and parametric statistics for 
quantifying residuals. The pattern display methods chosen and developed included 
scatter and time-series plots, residual and observation-prediction histograms, normalized 
and fractional bias and scatter error plots, and spatial pattern trends analyses or drift 
estimation techniques (spatial interpolation methods such as simple and universal 
kriging). A large group of descriptive statistics supplemented the information provided 
by the graphical methods. Some of the more important measures included mean square 
error (MSE) and its dimensionless derivatives (i.e., spatial, temporal, bias, systematic, 
and unsystematic components), index of agreement (IDA), rank score index (RSI), relative 
DMSE (also a MSE derivative), bias, variance, correlation, and a number of logau-ithmic 
indices. 

6.1 SUMMARY OF MAJOR FINDINGS 

Our results can be categorized under four headings: residual and scatter error 
patterns, performance sensitivity in apparent model error, spatiotemporal and bias error 
patterns, and potential factors of influence on apparent model performance. The key 
findings under these four categories are given here. Greater physical understanding of 
model performance could be gained if predictions of wet deposition and average air 
concentrations were evaluated for the same periods. For instance, simulated 
atmospheric concentrations might be too low because parameterized wet removal is too 
high, but if simulated wet deposition for the same period is also too low, then some other 
feature must be involved. Unfortunately, suitable observation data sets for wet 
deposition and regional air quality did not coincide. References to the model 
performance issues raised in the introduction to this section are made when appropriate. 



129 

6.1.1 Residual and Scatter Error Patterns 

The residual and scatter error in ASTRAP predictions are determined by applying 
parametric statistical measures to quantify the magnitude of the apparent model error 
and using graphical statistics to visually display the patterns of this error. The results 
indicate that the magnitudes of maximum seasonal and monthly mean DAC can be 
reproduced reasonably weU. Without additional years of model evaluation data, however, 
it is not possible to determine whether temporal patterns in observed wet SO^ deposition 
are also reasonably reproduced by the model. The limited data analyzed show significant 
interseasonal and interannual (among winters, springs, and autumns) differences in model 
performance. More data are needed to confirm this. The major findings on ASTRAP's 
performance in simulating monthly average air concentrations and then in simulating 
seasonal wet deposition are highlighted. 

6.1.1.1 Monthly Air Concentrations 

• Residuals for monthly (January, April, and July) SO4 air 
concentration are almost normally distributed, with at least 60% of 
the differences in observations and predictions within one standard 
deviation of the mean residual (o^). The October distribution is 
skewed to the left (strong tendency toward overprediction), with 
only 30% of the residuals within one o^. A slight to moderate 
positive bias exists in monthly SO4 predictions for July and January, 
and a slight negative bias exists for April. 

• The model overpredicts observed S 0 | concentrations by greater 
than a factor of two at one location in January and at five locations 
in October. Model underpredictions of the same degree occur at 
two locations in January and one location in July. 

• The residual distributions for monthly SOj air concentrations 
approach normality for aU four simulation months. A positive bias 
(underprediction) tendency in SO2 predictions is exhibited for aU 
simulation months, more so for January and April than for July and 
October. 

• The model underestimates observed monthly SO2 air concentrations 
by greater than a factor of two for 12 of 145 observations: three in 
January and July, four in April, and one in October. The same 
degree of overprediction occurred only at single locations m 
January and July. 

• Although the bias error is smaller over the first three months for 
SO|, ASTRAP seems to track the variations in mean monthly SO2 
observations better than the variations in mean monthly SO4 
observations. Local variations in meteorology and emissions, not 
adequately resolved in our model input data base, may be the major 
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contributing factor leading to this underprediction in SOj 
simulations. 

. The relative error (expressed as the DMSE percentage of the 
MSO/(0)^ in ASTRAP monthly SO| predictions ranged from 4% 
(July) to 33% (October), while the relative error for ASTRAP 
monthly SOj predictions ranged from 18% (October) to 25% 
(January). 

• ASTRAP is able to explain 49% of the variance in July SO4 
observations and 37% of the variance in January _and July SOj 
observations. Only 15% of the January observed SO4 variance and 
26% of the April observed SO2 variance is explained. 

• As measured by a robust performance statistic, RSI, ASTRAP does 
very weU in simulating July SO4 air concentrations. Performance is 
adequate when simulating July SOj. The model performs poorly 
when predicting SO4 and SOj in January and April, and when 
predicting SO4 in October. Less than adequate performance is 
exhibited when simulating October S0 | . The very good model per
formance for July SO4 may be due, in part, to the avaUability of 
better empirical data used for ASTRAP parameterization of 
summer transformation rates (SOj to SOp than the data avaUable 
for other seasons. ASTRAP's predictions of SO| concentrations are 
most sensitive to variations in transformation rates (see discussion 
in Sec. 6.1.2). 

6.1.1.2 Seasonal Wet Sulfate Deposition 

• The summer 1980 and 1981 residuals for wet SO4 seasonal 
deposition are approximately normally distributed, with over 70% of 
the observation-prediction differences within one a^.. The residuals 
for winter 1980 show the farthest departure from normality, with 
only 44% of the residuals within one Oj,. When seasons are 
combined, the 1981 distributions of residuals are shown to approach 
normaUty (76% within one ô .), and the 1980 distributions are shown 
to depart from normality (only 47% within one o^. The greater 
number of data points (observation-prediction pairs) available in 
1981 probably caused the difference in the 1980 and 1981 
distributions. 

• Model predictions for summer 1980 and spring and summer 1981 
show the smallest scatter (with respect to other seasons) and the 
most symmetrical (unbiased) scatter around the perfect prediction 
line. Comparisons of observations and predictions for the remaining 
seasons show a tendency for model overprediction. 
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• The model overpredicts observed SO4 deposition by more than a 
factor of two for 22 of 133 observations in 1980 and 14 of 195 
observations in 1981. Over 75% of these overpredictions occurred 
in the winter or the fall at sites on an event or daily sampling 
protocol. The same degree of underprediction occurred at only 
three locations, one in summer 1981 and two in winter 1981. 

• It is interesting to note that the factor-of-two over- and 
underprediction data points are predominately represented by 
precipitation chemistry samplers with event (MAP3S) and daily 
(UAPSP) sampling protocols. This suggests that there may be 
systematic differences in observations resulting from sampling 
protocol (see Sec. 6.1.4). 

• The time series of the apparent bias in predictions shows a stronger 
tendency toward model overprediction in 1980 than 1981, especially 
in the spring. The ratio of the coefficient or variation of 
predictions to the coefficient or variation of observations (CVR) is 
close to 1.0 for all seasons except winter 1980 (CVR = 0.52), winter 
1981 (CVR = 0.84), and spring 1980 (CVR = 1.8). The model seems 
to track the season-to-season variation in observed wet SO4 
deposition fairly weU. 

• The relative error [expressed as the DMSE percentage of the 
MSO/(0)^] in ASTRAP seasonal wet S 0 | deposition predictions 
ranged from 9% (summer 1981) to 34% (fall 1980). 

• Model simulations in summer and in spring and faU 1981 exhibit 
about 50% to 55% of the observed variance, while simulations in 
winter 1980 exhibit only 5% of the observed variance. The 
explained bias-corrected variance (EBCV) between seasons, 
decomposed into spatial and temporal components, is given in 
Sec. 6.1.3. 

• Using a robust statistical measure, RSI, we found that ASTRAP 
performs best in simulating seasonal SO4 wet deposition for summer 
and spring 1981. Performance drops off sharply when simulating 
seasonal observations in autumn and winter 1980. The interannual 
differences in model performance appear significant for all seasons, 
except winter and faU of 1980 and spring and summer of 1981. 
These results should be viewed with caution because of the limited 
amount of data available (only 2 years) for comparing differences in 
interannual and interseasonal model performance. 

6.1.2 Performance Sensitivity Patterns In Apparent Model Error 

The sensitivity in ASTRAP model performance is examined by a factor-of-two 
adjustment to four internal model parameters (Vj for SOj and SO4, Tj., and WC). The 
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dry-deposition velocities (Vj) were varied in the same direction simultaneously and 
counted as a two-parameter variation. AU references to ASTRAP pertain to results for 
the unmodified version. Since variation of internal model parameters does not greatly 
al ter the shape, position, and orientation of the predicted contours, the performance 
sensitivity pattern analysis did not consider the model's sensitivity in reproducing 
observed spatial patterns. The results indicate the uncertainty variations (100% larger or 
50% smaller) in ASTRAP parameters considered in this study can significantly influence 
the magnitude of model predictions and the level of performance in those predictions. 
Model estimates of SO2 and S O | air concentrations are most sensitive to variations in V̂ j 
and transformation rate (T^.), respectively. OveraU, the predicted SO4 air concentrations 
are more sensitive to parameter variations than the predicted SO2 air concentrations. 
Model estimates of wet deposition are most sensitive to variations in wet-removal 
coefficient (WC). The major specific findings are highlighted in the following sections. 

6.1.2.1 Monthly Air Concentrations 

• Distinct performance sensitivity patterns emerge for SO4 and SO2 
simiUations when the selected model parameter adjustments are 
made. The performances of the 27 model versions resulting from 
these adjustments (including the nominal or standard ASTRAP) are 
clustered on a normalized bias-scatter error plot in parameter 
sensitivity groups of three (triple) and nine (triplet). The triple 
clustering for S02^ is performance-ordered by T^, while the triple 
clustering for SO4 is performanced-ordered by W^. The triplet 
clustering for S02^ is performance-ordered by V J , while the triplet 
clustering for SO4 is performance-ordered by Tj,. The individual 
model versions within triples are performanced-ordered by WC. 
There is less performance sensitivity for SO2 triples and triplets 
than for SO4 triples and triplets. In other words, internal parameter 
variations affect model performance more when SOT air 
concentrations are simulated than when SO2 air concentrations are 
simulated. 

• Simulations of SO2 are most sensitive to variations in Vj, followed 
by variations in Tj, and WC. Simulations of SO4 are most sensitive 
to variations in T .̂, foUowed by V̂ j and WC. Because SOT 
concentrations are linear functions of SO2 emissions in ASTRAP but 
are affected by T .̂ in an opposite way than are SO2 concentrations, 
the extremes produced by parameter adjustments require that 
parameters with the most sensitive influence on air concentrations 
(VJ and TJ,) be adjusted in opposite directions. 

• By making the parameter adjustments considered, the model's 
ability to reproduce observed monthly S 0 | air concentrations 
improved by as much as 34% (by halving the V̂ j and T^ and doubling 
the WC for October predictions). No significant improvements were 
evident in July SO4 and SO2 and October SO2 predictions. 
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The systematic error reduction potential (SERP), through internal 
model parameter adjustment, is greatest for October SO4 
simulations (SERP = 59%). The SERP for SOj and SO4 predictions 
in April and January is around 23%. This suggests that a significant 
fraction of the systematic error in model predictions for these 
particular monthly periods can be reduced through adjustments in 
model parameterization. The systematic error in model predictions 
is inherent not only to model parameterization but also to the 
measurement of air concentrations, quantification of source 
emissions, and generation of wind and precipitation fields. Without 
a means to segregate the sources of systematic error in model 
predictions, any revisions to model parameterization should be made 
cautiously, and in any case, only with the support of data obtained 
through field verification. Recommendations are made in Sec. 6.2 
on the importance of quantifying model input and evaluation data 
(field measurements of DAC) error and on the statistical treatment 
of this error to more readily identify its sources (i.e., model 
parameterization, field measurements). 

6.1.2.2 Seasonal Wet Sulfate Deposition 

• Distinct patterns in model performance sensitivity emerge in the 
wet-deposition simulations when the selected model parameteriza
tion adjustments are made. The performances in model predictions 
resulting from these adjustments are clustered on normalized bias-
scatter error plots in groups of three (triple) and nine (triplet). 
Triple clustering is performance-ordered by V ĵ, while triplet 
clustering is performance-ordered by WC. For the parameter 
adjustments considered, these patterns, reveal that model 
performance for wet SO4 deposition is most sensitive to variations 
in WC, followed by variations in V ĵ. 

• The parameter adjustments did not improve the model's ability to 
reproduce wet deposition as much as they had for air 
concentrations. A maximum of 16% improvement over ASTRAP's 
performance occurred for the autumn simulations, with WC halved 
and with T normal or doubled. None of the parameter-set 
adjustments considered provided better results than the results 
obtained with ASTRAP summer and spring 1981 simulations. 

• The SERP achievable through our internal model parameter 
adjustment is greatest for autumn (41% in 1981 and 14% in 1980) 
and spring (22% in 1980) wet S 0 | deposition predictions. These 
results suggests that a significant fraction of the systematic error 
in model predictions for these seasonal periods, most notably 
autumn 1981, could be reduced through adjustments in model 
parameterization. 
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Since systematic error is inherent to model input and model 
evaluation data bases, any revisions to model parameterization 
should be made cautiously and should be based upon relevant field 
measurements. Recommendations are made in Sec. 6.2 on the 
importance of quantifying model input and model evaluation data 
(field measurements of wet SO| deposition) error, and a method is 
suggested to treat this error statistieaUy in order to identify its 
sources more readily. 

6.1.3 Spatial, Temporal, and Bias Error Patterns 

Error patterns are examined by decomposition of MSE into spatial, temporal, and 
bias components and by decomposition of variance into spatial and temporal components. 
Kriging is then used to further examine ASTRAP's ability to reproduce spatial patterns in 
the observation fields (such as the position, shape, orientation, and magnitude of the 
gradient in the contours). Although there are no significant variations in the magnitudes 
of the maximum predicted and observed interannual wet depositions, there are 
significant variations in the locations of the observed maxima. Since variability in 
meteorology plays a substantial role in influencing locations where observed maxima 
occur, the way wind and precipitation fields are treated (in most Lagrangian and in some 
Eulerian models) may be the reason the model has trouble locating the maximum 
deposition areas. All regional transport models have difficulty properly characterizing 
local and subgrid variations in wind and precipitation fields. The model's inability to 
reproduce other spatial features in the observed data, such as the shape, orientation, and 
magnitude of the deposition gradient, may also result from problems in representing wind 
and precipitation fields, although simplifications inherent in parameterizations of 
chemical or removal processes may also contribute. With respect to wind fields, Kuo 
et al. (1984) iUustrated improvements in trajectory accuracy, versus the use of normal 
NMC observations, through use of numerical weather prediction (NWP) models to 
generate winds. These models would, in effect, be used as a sophisticated spatiotemporal 
methodology for both winds and thermodynamic atmospheric properties. The winds 
would be mass-consistent, dynamically correct, more reliable in data-sparse areas, and 
potentially more descriptive of phenomena such as the noctural jet (Demerjian 1985). 
The specific major findings follow: 

• The spatial error in ASTRAP predictions of wet SOT deposition 
dominates, accounting for over 70% of the total error in the winter, 
spring, and summer. The predicted wet SO| deposition in the 
autumn shows comparative levels of spatial and bias error, with a 
relatively smaU contribution of temporal error to the total error. 
The temporal error across seasons is smsUler than the other two 
error components, particularly for winter and autumn. These 
results are probably caused by the statistically small number of data 
points (two seasons) considered in our analysis. Although only 45% 
of the error in the autumn predictions is spatial in origin, the 
relative larger overaU error in autumn (73% to 122% greater than in 
spring and summer) makes the spatial error in autumn slightly larger 
than that in spring and summer. 
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• The model's ability to explain bias-corrected variance from one year 
to another ranges from 41% for autumn simulations to over 75% for 
summer simulations. The percentage of the total EBCV resulting 
from the model's ability (inability) to reproduce the spatial patterns 
in observations ranges from 10% for autumn simulations to 54% for 
summer simulations. In contrast to this rather considerable 
seasonal variation, a relatively smaU seasonal variation is shown for 
the explained temporal variance. A maximum of only 7% variation 
across seasons is exhibited for the temporal variance, while over 
35% variation is exhibited for spatial variance. The model appears 
to explain temporal variance from year to year weU, but it does not 
explain spatial variance from year to year so weU, with the 
exception of the summer simulations. Although these results seem 
to be in line with results obtained through MSE decomposition, 
additional years of data are needed to confirm these findings. 

• A geostatistical interpolation technique known as kriging was used 
to visuaUy assess ASTRAP's ability to reproduce spatial patterns in 
DAC. This analysis showed that although the magnitudes of the 
observed maximum in SO4 air concentrations and wet SO4 
deposition are reasonably reproduced, the locations of these 
maximums is not. The model also had difficulty in reproducing the 
position, shape, and magnitude of the gradient in the observed 
spatial patterns. 

6.1.4 Potential Factors of Influence on Apparent Model Performance 

Four factors that may account for some of the performance results for wet SO4 
deposition obtained in this study and for the variability^ in performance results obtained 
in previous model evaluation studies were examined. The factors include (1) geographic 
regions, (2) sampling protocols, (3) levels of spatial aggregation of predicted and observed 
variables, and (4) the expressed forms of the observed and predicted variable (wet 
deposited fluxes versus precipitation-weighed ionic concentrations). The major findings 
foUow. 

• ASTRAP seems to perform substantially differently in different 
geographic regions. Real regional variations in model performance, 
especiaUy in regions with extreme negative bias, may be 
exacerbated by the apparent bias associated with observation 
sampling protocol (see next item). 

• Significant ASTRAP overpredictions (by more than a factor of two) 
occurred much more often at observation sites with an event or 
daily sampling protocol than at sites with a weekly or monthly 
sampling protocol, particularly during cold or cool seasons. This 
appears to be the result of the fact that samples with sulfur(IV) are 
preserved before they are analyzed at sites with an event or daily 
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sampling protocol (i.e., MAP3S). The sulfur(IV) in samples that are 
not preserved (i.e., with a weekly or monthly sampling protocol) 
gradually converts to S 0 | [sulfur(VI)], thus leading to higher SO4 
measurements in samplers with these protocols. The wet sulfur 
deposition in ASTRAP corresponds to the bulk sulfur equivalent of 
combined S(IV) and S(V1) and should more closely correspond to 
observations in which sample preservation of S(IV) is not ensured. 

Aggregation and averaging of site observations and predictions over 
larger spatial scales before comparison showed that model 
performance improved as the aggregation scale got larger. This is 
probably a result of smoothing of smaller-scale variations in 
observations associated with terrain effects on mesoscale 
meteorology or with local sources. 

When observations and predictions are compared on a basis of PWIC 
versus mass deposition flux, ASTRAP performance declined for 
simulations in four seasons, did not show any significant change for 
three seasons, and increased for one season. These results may have 
occurred because ASTRAP calculations use grilled precipitation 
fields, not values measured at the wet-deposition sites. 

6.2 RECOMMENDATIONS 

Although this study helps to provide new insights on model performance 
evaluation (MPE) methods and a better understanding of MPE results, we are still unable 
to specify the level of uncertainty in model predictions and we stiU lack a fundamental 
understanding of why LMSTD models perform the way they do. There are three areas of 
further research could result in a way to quantify uncertainty and improve our 
understanding of model performance. These research areas are (1) the completion of the 
development and test application of the empirical Bayesian uncertainty quantification 
methodology, (2) the estimation of model input and model evaluation data errors and the 
explicit incorporation of these errors into measures of performance of model predictions, 
and (3) the investigation of the sensitivity in model performance by local and global 
variation of key model and model input variables. This recommended research is briefly 
described. 

6.2.1 Empirical Bayesian ProbabUity Methodology 

To explicitly quantify uncertainty in model predictions, we must make 
hypotheses about that uncertainty and then test them. As previously mentioned in this 
report, this requirement can be accomplished through application of a Bayesian 
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probability formulation.* Bayesian methods, however, are often criticized because they 
introduce heuristics or subjectivism into the process. Instead of depending on subjective 
judgment to derive the prior distribution of model-predicted variances (prior to 
comparison of predictions with current observations), a method called an empirical 
Bayesian approach (EBA) can be used to derive the prior distribution through use of (for 
lack of a better term) a baseline observational data base. We have already developed a 
modified form of the EBA that assumes the prior distribution, but key parameters in that 
distribution are derived empirically. 

Our principal interest in the EBA is that it provides a means to compute the 
probability of the outcome (success or failure) of a set of proposed actions (i.e., policy 
options for the control or mitigation of acid deposition) based on the computed 
uncertainty in the predicted variables that are pertinent to judging the outcome of policy 
options. The probability of outcome of the proposed actions is expressed in terms of the 
coUective uncertainty of variables directly or indirectly affecting the outcome. 
Uncertainty, applied to a model, generally pertains to the range of expected error 
between the model predictions of a quantity and actual values of that quantity. Since 
the model ordinarily predicts a number of values with varying errors, both error and 
uncertainty must be described in terms of distributions of values. We seek various 
measures of those distributions, including means, standard deviations, differences among 
various parts of the model domain, and ideally, a representation of the distribution 
itself. For example, uncertainty could be quantitatively expressed in terms of the joint 
conditional probabUity distribution for a set of true values x-̂ , Xj, ..., x̂ ,̂ given the 
corresponding model predictions Xĵ , X2, ..., Xĵ . The task of an EBA is to estimate that 
distribution, or at least certain measures of it, based in part on samples of apparent 
error. However, it should be emphasized that uncertainty distributions reflect our 
knowledge of the model performance and thus are subject to change as increased 
information becomes avaUable. For example, we might expect that the MSE between a 
given set of predictions and true values would become better defined (i.e., smaller 
variance about the expected value) as more data become available for evaluation of the 
model. 

•'Hn the Bayesian approach to statistics, an attempt is made to utilize all available 
information in order to reduce the amount of uncertainty present in an inferential or 
decision-making problem. As new information is obtained, it is combined with any 
previous information to form the basis for statistical procedures. The formal 
mechanism used to combine the new information with the previously available 
information is known as Bayes' theorem; this explains why the term 'Bayesian' is often 
used to describe this general approach to statistics. Bayes' theorem involves the use of 
probabilities, which is only natural, since probability can be thought of as^ the 
mathematical language of uncertainty. At any given point in time, the statisticians (or 
the decision maker's) state of information about some uncertain quantity can be 
represented by a set of probabiUties. When new information is obtained, these 
probabilities are revised in order that they may represent aU of the available 
information." (Winkler 1972) 
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Figure 6.1 shows some of the major components of an empirical Bayesian analysis 
framework for use in generating uncertainty distributions. A great deal of effort went 
into developing and testing the empirical Bayesian model (EBM) during the initial stages 
of this project. Additional work is needed to modify the "Bayes" integrals, used for 
computing prior and posterior distributions and spatially averaged moments (means and 
variances) to account for quantifiable biases inherent to the data base. Upon 
consideration of the effort already expended, the availability of four additional years of 
precipitation chemistry data (through 1986), and the important role source-receptor 
uncertainty analysis could play in the future analysis of acid-deposition decisions and 
policy, we highly recommend that the work in developing and testing the EBA be 
continued. 

6.2.2 Estimation of Error in Data Bases 

As mentioned throughout this report, unquantified errors in the model input data 
(i.e., emissions and meteorology) and errors in the model verification data (i.e., field-
measured air concentrations and wet-deposition fluxes) make the evaluation of why a 
model fails or succeeds in reproducing observed spatial and temporal patterns extremely 
difficult. Attention must be given to work that will attempt to estimate this error and 
incorporate it into model evaluation performance measures. Most critical to improving 
the understanding and interpretation of model performance are the estimation of error in 
the model evaluation field data and the segregation (i.e., separation from model and 
model input data) of this error so it can be expressed as separate error elements in the 
computed model performance measures. One approach to the quantification and 
segregation of observational error is the use of a maximum likelihood and least-squares 
estimator as suggested by Jones (1979). 

6.2.3 Model Sensitivity to Model and Data-Base Uncertainty Perturbations 

If error bounds or limits in the model parameterizations and/or the processing 
and treatment of the model input data can be set, then, in principle, sensitivity to model 
predictions to local (one variable at a time) and global (all variables simultaneously) 
variations within the specified error bounds can be determined. This determination can 
be made by using methods such as global or local sensitivity analysis (with sets of 
ordinary or partial differential equations) and/or empirical orthogonal function analysis. 
In this study, we have only looked at model performance sensitivity in terms of variations 
in four internal model parameterizations (V̂ j for SO2 and SOT, T , and WC). Several 
other model parameters or modeling assumptions (i.e., involving the use of higher-
resolution model evaluation and/or input data and the way these data are processed or 
treated) not previously investigated can be varied. These could prove to be extremely 
useful in diagnosing the sources of error in model performance so that performance can 
be improved in a scientifically defensible manner. Some suggestions to consider are 
listed. 

• 
• Diurnal and seasonal patterns of vertical profiles of eddy diffusivity 

(an indicator of stability) and implied mixing heights 
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Rate of loss of pollutant to the free troposphere by precipitation 
systems 

Upper and lower limits to dry deposition velocities during the first 
three hours of dispersion 

Primary sulfate emission factors 

Increased transformation rate from near-surface emissions during 
the first three hours of dispersion 

Form of the wet-removal parameterization 

Definition of meteorological seasons 

Emission gridding algorithm 

Depth of the atmosphere (weU-mixed layer and above) in the 
vertical integration 

Minimum precipitation allowed to affect results 

Depth of the horizontal transport layer 

Assumption of a bivariate normal distribution of trajectory endpoint 
ensembles 

Choice of a six-hour trajectory time step 

Relative seasonal and latitudinal variation in wet-removal 
parameterization 

Relative seasonal and diurnal variability of dry-deposition velocities 

Use of multiple years of observed wind and precipitation fields 

Relative seasonal and diurnal variability of linear transformation 
rates 

Use of monthly wet-deposition observations and monthly emission 
rates to investigate model performance as a function of temporal 
data-base resolution 

Use of the most recent version of the NAPAP source emission 
inventory 

Variation in the spatial (horizontal and vertical) distribution and 
magnitude of emission fields 
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Use of alternative methods to generate air parcel trajectories (i.e., 
numerical weather prediction models) 

Use of multi-year stochasticly generated wind and precipitation 
fields to generate forecasted responses in source receptor 
relationships (Small 1985, see App. N) 

Examination of the feasibility of using existing and future dry-
deposition measurements from the Core Research Establishment 
(CORE) network as a supplemental model evaluiation data base 
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